
Designing a Server Array System for
Multimedia World-Wide-Web Services

Y.B. Lee and P.C. Wong
Advanced Network Systems Laboratory
Department of Information Engineering

The Chinese University of Hong Kong, Hong Kong
Tel:(852)-2609-8372 Fax:(852)-2603-5032

{yblee, pcwong}@ie.cuhk.edu.hk

Abstract

In [1] we reported the design and implementation of a
video-on-demand (VOD) system using a server array
architecture. In this paper, we extend the work into a full
multimedia server array system for world-wide-web
services. The system allows stream-type services such as
video and audio guaranteed continuous service
irrespective of the background data traffic. The server
array approach has the benefits of (1) more system
capacity, as individual server has individual CPU, disk,
and network channels, (2) scalable, as the system capacity
increases with the number of servers without the need for
data duplication, and (3) fault tolerant, as server-level
fault-tolerant schemes can be devised for sustaining
service even if a server fails. We describe the design and
implementation of our WebArray system - a server array
software system developed for multimedia world-wide-web
services. Our implementation employs integrated
scheduling at the disk and network subsystems to ensure
the continuous delivery of video and audio.

1. Introduction

The exploding success of world-wide-web (WWW)
creates many exciting applications in the Internet. The ease
of use, flexibility and portability of web documents makes
it an ideal tool for networked information retrieval. The
Internet web servers and browsers are already making their
way into business corporate information systems for
intranet applications.

A general web system consists of one or more web
servers connected to the network using TCP/IP. Users
retrieve information using web browsers like Netscape or
Internet Explorer to contact the web servers for
information retrieval. The browser will handle all network

communications with the server and presents the retrieved
data in the appropriate format. The current web servers
support many data types, including text, formatted hyper-
text (HTML), images (GIF, JPEG), audio (au, wav),
animation, or even downloadable components like Java
applets or ShockWave Director applets. While there are
some streaming audio and video extensions being
introduced, none of them provide quality-of-service
control and the video and audio streams will suffer
significantly if the server is busy serving web documents.

All current web servers run on a single server. Large
and busy web sites may run server clusters and distribute
requests to individual servers for a particular piece of
information - Service partitioning [2-4]. This technique
allows the loading to be shared by several servers, but if
many clients are accessing one particular server for a
specific page (e.g., a popular video), the hot-spot server
will still be overloaded. To remedy this problem, one may
replicate the more popular pages on several servers -
Service replication. This generates into management
complexity, and the storage needed will be several times of
the original storage. Given that good quality video and
audio streams require vast amount of storage (e.g., a 90-
minute MPEG 1 movie requires approximately 1 GByte
storage), service replication clearly has its limitation.

In this paper, we consider a multimedia server array
system where data blocks of each stream (esp. video and
audio) is striped across an array of autonomous servers -
Service Striping. The client contacts the servers one by
one to request blocks for its own stream, and reconstruct
the stream at the client. In this way, the loading of client
requests is uniformly shared by all the servers without the
need for data replication. Such an approach has the
benefits of (1) more system capacity, as individual server
has individual CPU, disk, and network channels, (2)
scalable, as more client requests for one service can be
supported by adding more servers, and (3) fault tolerant, as
server-level fault-tolerant schemes can be devised so that
when a server fails, the system can still maintain service.

The rest of the paper is organized as follows. Section 2
describes the general server array architecture. Section 3
describes the server striping and data placement policy
issue and presents our proposed Dynamic Object
Placement scheme to balance storage and I/O efficiency.
Section 4 describes the design of our multimedia server
array system. Section 5 describes our implementation and
presents some experimental results. Section 6 gives our
conclusion and outlines some future work.

2. Server Array

A server is an entity serving requests posted by the
clients. The server retrieves the data blocks from the
storage, and sends back the blocks in the form of packets
via the network. Under this view of a server, the server
capacity can be limited by three factors: storage device
(e.g. disk) throughput, CPU processing and I/O capability,
and network access bandwidth. To increase the system
capacity, one may use (1) a faster storage device, e.g. disk
array instead of a single disk, (2) a more powerful CPU, or
(3) a high-speed network such as Fast Ethernet or ATM.
However, this per-component upgrade approach does not
provide a long-term scaling path for an even higher server
capacity, and is not always possible.

Consider a disk array used to increase the disk
throughput. The effectiveness of such approach is limited
by the reduction in per-disk block size. For example, if the
block size for retrieval is Q bytes, then the per-disk block
size for an N-disk array will be Q/N. For large disk arrays,
this reduction in block size can hamper the throughput of
the disk array as disk seek time and latency overhead will
be significant.

A server array, on the other hand, consists of an array
of autonomous servers. Figure 1 shows the network
architecture of a general server array system. Data blocks
of each stream are striped across the array of servers, for
example block #1 at server #1, block #2 at server #2, and
so on. A fast packet switch fabric is used to connect
servers and client stations, and each client will contact the
server one by one for retrieving blocks of a particular
stream, and reconstruct back the stream at the client for its
use. Since each server has its own storage subsystem,
CPU, and network channel, the overall server capacity
increases with the number of servers, and one may
increase the capacity at any time by adding a further server
and redistributing the data over all the servers. We note an
asymmetric traffic requirement between servers and
clients. So the servers may be assigned with one or more
high-speed links, whereas several clients may share a
single low-speed link.

3. Data Striping and Placement Policy

The key to achieve load-sharing without data
duplication in server array is the distribution of data across
all servers - data striping. This section considers how to
distribute data blocks over a server array to maximize the
retrieval efficiency.

While data striping has been studied extensively in the
disk array context, data striping in server arrays poses new
challenges. Servers are loosely coupled using a
communications network which is subject to all kinds of
delays, loss, and bandwidth limitation. So server array
cannot use small striping unit size like disk array,
otherwise retrieval will be very inefficient. On the other
hand, data striping in server arrays is done at the
application level. Unlike disk array which requires all data
to be striped using a uniform scheme and unit size, server
array allows files or services to be striped differently,
providing different levels of fault tolerance. Finally, server
array can achieve server-level fault-tolerance by
employing data redundancy similar to that of the
Redundant-Array-of-Inexpensive-Disks (RAID). Here, we
considered the notion of a server-level fault-tolerant server
array system - Redundant-Array-of-Inexpensive-Servers
(RAIS). The use of a server-level fault-tolerant scheme
can cover disk failures as well. For example, a disk failure
in one particular server simply manifests as a server
failure. Once detected, the system continues to function
until the failed disk is repaired.

It is interesting to note that while RAID schemes are
useful in data applications for protecting from disk
failures, they have a serious problem when used for
multimedia applications. This is because in multimedia
systems, most traffic are continuous-media services. In the
event of disk failure, each subsequent lost block has to be
reconstructed by reading blocks of the same stripe (even if
they have been read previously as stream-type services are
mostly sequentially accessed) from the remaining active
servers. The effective throughput of the RAID can be
significantly lower than normal. This is unacceptable as
continuous services like video and audio requires stringent
server response time.

3.1. Storage Striping

In a server array, there are two possible ways of data
striping: storage striping and object striping. In storage
striping, storage in each server is divided into equal-sized
blocks of Q bytes. For ease of description, we denote the
servers in an N-servers array as S0, S1, ..., SN-1. Within each
server, we divide all storage spaces into fixed-size blocks
bj,i, denoting the jth block in server i (Figure 2).

All blocks from the same row comprise a storage
stripe. Under fault-tolerance, parity blocks might be

allocated to protect the system from server failures. Any
lost block in a stripe can then be obtained by a simple
exclusive-or operation on the remaining data blocks in the
same stripe. Multiple-server failures can also be protected
by using more redundancy through Reed-Solomon
encoding. In such cases, a (N+k)-servers array will be able
to protect up to k simultaneous server failures with
redundancy overhead of k/N.

The size of striping units determines the efficiency of
data retrieval from the storage subsystem. To increase
effective disk throughput, one should use large block size.
However, large block size is inefficient for storing small
data objects, such as text pages in a multimedia system
environment. Consider that we need to retrieve N blocks
out of the (N+k) blocks in a stripe when a server fails. If
the data object is smaller than a single stripe, we still need
to read the entire stripe for reconstruction. We consider
the following two problems in using large striping units:
1. Internal fragmentation - data objects may be smaller

than a storage stripe unit, thus wasting the storage
space within a stripe unit;

2. Striping overhead - data objects may be smaller than a
stripe, thus requires reading extra storage stripe units
for reconstruction during failure.

The second problem is easily solved by using a
truncated-stripe to cover the object if it is smaller than a
complete stripe. For example, if the server array consists
of N servers and the data object only needs m (m < N)
units (including the parity block), we will just use m units
to store the object. During server failure, we will need to
transfer any m-1 out of the m stripe units to the client
stations for reconstruction. Note that this setting requires
that the server supports variable stripe lengths for different
objects. This can easily be implemented as part of the
directory service within the system.

Still, the first problem cannot be solved with storage
striping as all objects are striped with a uniform striping
unit size. On the other hand, we observe that it may be
desirable for different services to be striped in a different
manner, i.e., with different stripe unit size and redundancy
levels. We consider in the following an alternative to
storage striping - object striping.

3.2. Object Striping

Object striping does striping at the data object level. In
other words, the striping is performed on an individual
data object, such as a HTML page, an image, audio, or
video file. Note that an object in this context is not
equivalent to a disk file. We could have compound objects
which comprise multiple different types of objects.

We consider a Dynamic Object Placement (DOP)
scheme to optimize striping for various kinds of media
data. In DOP, all storage and objects are striped using a

small stripe unit (e.g. 1KB), called micro-blocks. Using
small storage stripe units solves the internal fragmentation
problem. However, the placement policy of the object
stripe units is not fixed, and depends on the size of the data
object to optimize efficiency.

Under DOP, each stored data object has a DOP policy
consisting of three attributes:

{START_UNIT, UNIT_SIZE, REDUNDANCY}

START_UNIT records the starting stripe unit of the
particular data object; UNIT_SIZE records the size of a
macro-block in units of micro-blocks. The data object will
be striped across servers in macro-blocks. Lastly,
REDUNDANCY records the level of redundancy
employed in storing the data. A redundancy value of zero
means no redundancy while a value of k means (N+k) RS-
coding is employed. Note that the conventional server
replication technique is a special case of DOP with
UNIT_SIZE equal to size of data object, and
REDUNDANCY equal to the number of servers minus 1.

The DOP policy is created when a data object is first
stored into the server array. The DOP policy may be
changed and consequently the data rearranged if
necessary.

The DOP policy allows different types of data objects
to be striped in a different manner. Figure 3 shows that
large objects can be assigned DOP policy with large
UNIT_SIZE (e.g. 64 microblocks for video streams) for
optimizing I/O efficiency at the disk subsystem. So each
client request will retrieve 64 microblocks from one server
at a time. Smaller objects or infrequently accessed data
objects can be assigned DOP policy with small
UNIT_SIZE (e.g. one or two microblocks). On the other
hand, different objects may have different redundancy
levels as well. For example, video objects can be assigned
with REDUNDANCY of 1, web page graphics with
REDUNDANCY of 2, and web page texts with
REDUNDANCY of 3. In this way, the video service
survives single-server failures, while graphics and web
page texts will survive double and triple-server failures
respectively. This flexibility allows the multimedia service
to degrade gracefully during multiple server failures.

4. Multimedia System Design

In a multimedia server array, each server is by itself an
autonomous multimedia server interacting with the client
stations. In this Section, we consider a software and
protocol architecture as shown in Figure 4 for supporting
multimedia services in an integrated manner.

At the top layer is the Integrated Services Server (ISS),
acting as the service manager for various services and
system components. It is responsible for initializing all
system components, including the disk and network

drivers, disk and network schedulers (IDS, ITS), as well as
the individual services (e.g., web pages, audio, video).
Note that these services are not the same as their
conventional counterparts. They participate in the server
array to serve a subset (rather than the whole) of striping
units upon each request from the clients.

To illustrate the system operation, when a request arrive
at the multimedia server array, the location and placement
of data objects are resolved by the Server Array Directory
Service (SADS). Then the data objects are retrieved
through an Integrated Disk Scheduler from the disk
storage into memory buffers. The retrieved data will then
be scheduled for transmission by the multimedia transport
protocols and the Integrated Transmission Scheduler. We
will discuss each component in the following.

4.1. Server Array Directory Services

Data objects in a server array are likely to be
distributed across multiple servers and various levels of
redundancies are supported. To provide location
transparency to the client applications, the Server Array
Directory Services (SADS) acts as an agent to manage and
resolve object names to data location mappings. This
allows client applications to retrieve objects by name
regardless of where the data objects is stored within the
server array.

4.2. Integrated Disk Scheduler

After a client request is resolved by the SADS, the data
object can then be retrieved from the disk storage. Note
that the retrieval of data object must meet the QOS
requirements for the supported services. For example,
video requests have to be handled in such a way that the
retrieval time is short enough to prevent client video
playback starvation. This is complicated by the existence
of other data requests, for example, HTTP text retrieval or
FTP service.

The problem is how to resolve disk access contention
among various services. To this end, we observe two
potential problems in the disk retrieval process:
1. Requests queueing - time-critical requests like video

can be delayed by non-time-critical requests arrived
earlier.

2. Requests blocking - time-critical requests can be
blocked for an extended period by a single large
request inside service.

To solve the first problem, we use an Integrated Disk
Scheduler (IDS) with multiple static-priority queues to
assign a higher priority of access to time-critical requests.
To solve the second problem, the IDS sets a limit on the
maximum allowed data block size on each request
serviced. Requests for larger block sizes are divided into

smaller sub-requests of maximum size Q and then
submitted to the disk scheduler one by one.

Consider that there are L queues, denoted as Q0, Q1, ...,
QL-1, in the IDS. Let each queue i be assigned a unique
fixed priority pi, with a lower value represents a higher
priority. Each queue also has a maximum concurrency
limit Ci, which governs at most how many requests of that
priority can be serviced simultaneously by the disk.
Finally, there is a single maximum concurrency limit Cdisk

for the disk device itself to limit the number of requests
(from any priority) to be served concurrently. This is
necessary as the requests are submitted asynchronously to
the disk device so that it can optimize efficiently through
disk seek scheduling (e.g. SCAN).

The number of queues and their priorities are assigned
at system start-up by the system manager using the
Integrated Services Server. For example, the system
manager may prefer 60% of the disk throughput be
reserved for video and audio. The number of data requests
to be serviced at any time must be limited to 40% by
setting the appropriate values for Ci of data queues. We
can register each service on one or more request queues
where future disk I/O requests will be directed to.

Figure 5 gives the scheduling algorithm for the IDS to
serve the request queues. The scheduling algorithm
ensures that lower priority requests are not served unless
all higher-priority queues either have no queueing requests
or have already reached their concurrency limit. In our
implementation of a multimedia server array, we have
three priority queues: Q0 (highest priority) is assigned for
continuous-media service, Q1 is assigned for HTTP, and
Q2 (lowest priority) assigned for FTP service. HTTP
service is assigned a higher priority as web browsing is
often interactive while FTP may take place in the
background.

4.3. Multimedia Transport Protocols

In this section, we describe the multimedia transport
protocols used to deliver the retrieved data through the
network to the client stations.

A multimedia server array consists of multiple
application-level protocols for different types of services.
Examples include HTTP service for World-Wide-Web
applications, FTP service for remote file transfer, and STP
service for on-demand continuous media like video and
audio. Unlike their conventional counter-parts, which
assumes single-server-multiple-client operations, the STP,
HTTP, and FTP protocols in our server array are capable
of handling data objects distributed across an array of
autonomous servers. In addition, server-level fault-
tolerance capabilities are available through data
redundancy and support by the lower-layer network
protocols.

To support the above capabilities for application layer
protocols, we designed two protocol suites for data and
continuous stream services having the following features:
1. Fault-detection capability - the application protocol

must be able to detect server failures efficiently and
take appropriate actions to mask the failure (see
below);

2. Fault-tolerance transparency - retrieval of an object
during server failure should be transparent to the user
unless the failure exceeds the fault-tolerance
capability for the object;

3. Quality-of-service - the QOS requirement (if any) of a
service must be maintained.

While there are many studies on multimedia protocols
[5-7], their emphasis are on the third point, i.e. QOS
requirement for individual services. In [1] we proposed a
protocol for a video server array, meeting the placement
transparency and QOS requirements. In this study, we
extend the work to full multimedia services in a
multimedia server array with support for server-level fault-
tolerance.

Rather than describing each protocol shown in Figure 4
in detail, we will briefly describe their functions and focus
on the solutions they provide to meet the capabilities
posed earlier. The well-known HTTP and FTP protocols
are standard Internet protocols and will not be discussed
here.

Data Transport Protocol. The Data Transport Protocol
(DTP) provides connection-oriented data delivery
services similar to the Transmission-Control-Protocol
(TCP) used in the Internet. However, in order to support
server array and fault-tolerance, extra mechanisms are
required. Firstly, each connection from client to the server
array is a one-to-many connection instead of the
conventional one-to-one connection. Secondly, as a data
object could be retrieved from multiple servers, data
sequencing and reconstruction has to be done before
passing to the upper layers. Thirdly, failure-detection
mechanism has been added to detect and indicate server
failures to upper layers for failure recovery.

Unreliable Datagram Protocol. The Unreliable
Datagram Protocol is a thin layer on top of the underlying
datagram service (e.g., UDP). The primary functions of
this layer is to hide the lower layer protocol complexities
and provide buffered asynchronous transmit and receive
services.

Reliable Datagram Protocol. The Reliable Datagram
Protocol (RDP) is crucial to the fault-tolerance capability.
Specifically, detection of server failures is performed by
the RDP and once detected, upper-layer protocols are
signalled to recover the failure. While failure-detection

also exists in the Data Transport Protocol, the algorithm
employed at the RDP layer is designed for real-time failure
detection and recovery for supporting stream-type
services, so that these services will maintain continuity
even if a server fails.

To establish a connection using RDP, the service
requester (e.g. STP) has to define failure condition for the
requested connection. Failure conditions can be defined by
the tuple:

{ MAX_RETX, TIMEOUT }

MAX_RETX is the maximum number of
retransmissions to attempt before declaring the connection
failed. TIMEOUT is simply the maximum time to wait for
an acknowledgement before retransmitting the
unacknowledged datagram.

Hence the maximum time for detecting failure is simply
given by:

Td = MAX_RETX*TIMEOUT

Therefore a system designer can adjust the failure
condition tuple according to the actual system
characteristics. The failure condition cannot be set too
loose or failure may be detected too late and media
playback affected. On the other hand, it cannot be set too
strict or false alarms will be generated. The maximum
failure detection time can be used to determine the buffer
requirement for continuous media playback during failure
as discussed in [1].

Stream Transport Protocol. The Stream Transport
Protocol is a revised version of the Video Transport
Protocol as discussed in [1]. The main idea is to ensure
that video can be delivered to the client in a timely
manner, and the client buffer will never be starved of data
for supplying video blocks to the decoder for playback.
Consequently, video can maintain continuity at the client
stations. Interested readers may refer to [1] for details.

4.4. Integrated Transmission Scheduler

Similar contention problem for disk access happens at
the network access. For example, the HTTP server may
transmit a large block of data (e.g. a JPEG file) while a
video block is being transmitted by the network driver. In
many cases, the order and pattern of transmission of both
blocks simultaneously are implementation dependent. This
is clearly undesirable as video traffic has far more
stringent timing constraint than data traffic.

To solve the above problem, we need a mechanism to
control which transmission requests are served by the
underlying network drivers. The result is the Integrated
Transmission Scheduler which sits between the upper

network protocols and the lower network drivers as
depicted in Figure 6.

There are two components within the ITS, the first part
is a collection of static priority queues, each holding
requests from their respective priority. All queued requests
are scheduled for transmission in the second part of the
ITS using the same scheduling algorithm as employed at
the Integrated Disk Scheduler. The scheduling algorithm
ensures that higher priority requests (e.g. video, audio) will
not be blocked by lower-priority requests (e.g. HTTP,
FTP) at the transmission queues in the Traffic Shaper.

The Traffic Shaper in the ITS comprises Z transmission
queues, each holding at most one block (Q bytes) of data
of a request for transmission. However, transmission is not
performed on a block-by-block basis, rather a sub-block or
packet (G bytes) is transmitted from each transmission
queue in each round of transmission, in an interleaved
manner. Hence, transmission of up to Z data blocks can
proceed simultaneously by multiplexing transmission at
the network driver.

This approach is useful for shaping the out-going traffic
to avoid transmitting data at large bursts, which would be
the case for FIFO discipline transmissions. Experimental
results [1] have shown that such traffic shaping can reduce
packet loss significantly at the client stations. This is
important as servers are normally high performance
computers with high speed networks, whereas clients are
low-end computers which might be busy in other tasks.
The traffic shaper can effectively bridge the bandwidth
gap between the servers and the clients.

5. Implementation Results

To demonstrate the concepts and designs, we developed
a multimedia web server at the Chinese University of
Hong Kong. At the time of writing, we have completed the
server-array version of the continuous-media server (STP)
and HTTP server, and operate our system with four
autonomous servers. The two services are controlled and
scheduled by the IDS and ITS. In the following sections,
we will presents our results so far and analyze their
implications. Other services like FTP will be implemented
in the near future.

5.1. Test-bed Configuration

All results are obtained from our multimedia server
array implementation - WebArray on four Pentium-90 PCs
running the Windows NT operating system. The detail
system configuration is listed in Table 1.

HTTP requests are generated using WebStone 2.0 [8]
and the standard test-file sizes distribution are shown in
Figure 7. For STP service, requests are generated using
client PCs. Each client PC establishes an active STP

connection for viewing a 1.2Mbps MPEG 1 video, which
is a 30 fps, near TV quality video through a web page.

5.2. Server Array Capacity and Scalability

In general, the server array architecture is a class of
symmetric multiprocessing systems where each processing
unit (henceforth referred as processor) is identical and
provides the same service. The scalability of such system
depends on several factors:
1. Resource contention among processors
2. Communications among processors
3. Synchronization among processors
4. Processing overhead due to parallelization

For a server array, we see that there are no resource
contentions among servers as each server has individual
disks, CPU, and network connections. Secondly,
communications among servers are in general not required
as requests are all generated by client stations and sent to
the specific server directly. Thirdly, there is no
synchronization among the servers as each server operates
autonomously without information on other servers in the
server array. Hence the first three factors do not exist in
the multimedia server array architecture. We study below
the fourth factor on scalability which is dependent on
different kinds of services.

5.3. Analyzing the HTTP Service

In HTTP 1.0 [9], there are several supported requests,
including GET, HEAD, and POST. Among them, GET is
used to request data objects from a HTTP server. As
information retrieval forms the highest traffic loading to a
HTTP server, we only consider the GET request in the
following.

The syntax of the GET request is as follow:

“GET URL HTTP/1.0”

where URL (uniform-resource-locator) identifies a data
object at the server. For example,

“GET /file25k.html HTTP/1.0”

requests a file object named file25k.html from the
server. To simplify analysis, we will assume there are m
objects in the server, denoted as the set {F}, and the size
of object i denoted as fi is ui. The access probability of the
object set is represented by {P} where pi is the probability
of file i being requested for each request generation at the
client stations. Requests are assumed to be generated
independently.

In a server array, where data objects are no longer
stored in a single server, a GET request has to be
converted into multiple GET requests, each requesting one
part of the data object from one server. The HTTP client

service at the client station will re-assemble the stripe units
and pass to the upper layer (e.g. a web browser).

Under this model there are three possible area of
inefficiencies: (a) increased number of connections per
client per server; (b) increased number of transactions per
client on each server; and (c) decreased I/O efficiency.

If we assume full striping for all data objects, i.e. for
any data object of size K bytes, we store K/N bytes into
each server, then the net effect is the same as converting
the set of file objects {F} into a new set of file objects
{F’ } in each server, where object i has size ui/N. As one
might expect, the exact decrease in server performance
depends on the implementation as well as the hardware
and software platform. Figure 8 compares the server
throughput at different object sizes to demonstrate the I/O
efficiency problem. For real-world data objects, we
benchmarked server arrays of 1, 2, and 4 servers with 20
HTTP clients using the standard WebStone 2.0 data set
and access distribution and the results are shown in Figure
9. The results show that the reduction in object size due to
full striping impose considerable overhead in processing
and hamper the I/O efficiency. Hence the per-server
capacity decreased for more servers. This problem could
seriously restrict the size of the server array system.

Fortunately, the Dynamic Object Placement scheme
proposed in Section 3 provides a solution. Specifically, we
could set a lower bound on the UNIT_SIZE to improve
I/O efficiency for smaller objects. For example, we
benchmark the same 4-servers WebArray system using
minimum UNIT_SIZE of 5KB, 50KB, and 250KB
respectively and the server capacity is significantly
improved (Figure 10). Note that an UNIT_SIZE of zero
represents full striping (i.e. no lower limit on UNIT_SIZE)
and duplication represents full data duplication at all
servers (i.e. no striping). According to Figure 10, we can
closely match the original server throughput by using
minimum UNIT_SIZE as small as 5KB. Hence by using
DOP with limited minimum UNIT_SIZE, the WebArray
system can be scaled-up without significant loss in I/O
efficiency.

The downside of setting a minimum UNIT_SIZE
striping size is that some data objects may not be striped
across all servers as they are smaller than a full storage
stripe, in which case redundancy (if employed) will
become significant as the stripe size is decreased.
However, this should not pose much problem as the object
in question is small.

5.4. Analyzing the STP Service

For the STP service, there will be no decrease in I/O
efficiency as the stream-type objects like video and audio
are much larger than the striping unit size. The STP
protocol is designed specifically to minimize processing

overhead in a server array system and hence does not have
significant extra processing requirements.

We obtain results for our WebArray with 1, 2, and 4
servers on a switched 10 Mbps Ethernet. We monitor the
server CPU utilization as an indication of server loading.
Figure 11 shows that a single P5-90 server can support up
to 10 STP sessions (~12Mbps), and the server CPU
utilization is roughly proportional to the number of active
clients. On the other hand, the CPU utilization is reduced
in a linear fashion when more servers are added. The
result is for P5-90 servers with SCSI disk and 10 Mbps
Ethernet adapters. Preliminary tests show that a P5-166
with a 100 Mbps Fast Ethernet and a Fast-and-wide SCSI
disk achieve more than doubled the server capacity.

5.5. Integrated Disk and Transmission Scheduling

In this section we analyze the performance of the
Integrated Disk Scheduler and the Integrated Transmission
Scheduler in scheduling continuous-media and data
services. Our current WebArray implementation supports
both HTTP and STP services. We run benchmarks to
measure the throughput of both services by varying the
number of STP sessions while concurrently serving 20
HTTP clients simulated using WebStone 2.0 with the
standard file set and access distribution. The results are
summarized in Figure 12.

We observe that the HTTP service throughput drops
progressively as more STP sessions are established. On the
other hand, the STP service throughput increase
proportionally to the number of STP sessions. This
demonstrates the effectiveness of the Integrated Disk
Scheduler and the Integrated Transmission Scheduler in
giving priority to STP service. If we run both services
without either one of the schedulers, the STP service will
be disrupted, resulting in video playback interruptions.

In the same test we also collected the mean system time
(service + queueing) for both services and shown in Figure
13. While the HTTP system time increases with increasing
STP loading, the STP system time remains below 250 ms
regardless of the server loading. This again suggests that
the I/O schedulers indeed protect the STP service from the
HTTP loading at the expense of increased HTTP system
time.

To ensure that HTTP sessions are not totally denied
service, it is crucial to limit the number of STP sessions on
a server by some admission control algorithms. This
ensures that the system will have a sufficiently large spare
capacity to provide a reasonably good service (i.e., delay)
to HTTP services.

6. Conclusion

The proposed multimedia server array architecture in
this paper provides a practical design framework for
implementing truly scalable, and fault-tolerance
multimedia servers. While the general issue of disk and
network resource allocation and scheduling has been
solved by the I/O schedulers, there are other issues yet to
be tackled, including (a) CPU scheduling; (b) scheduling
of CGI programs in the HTTP server; and (c) integration
with other server extensions for dynamically generated
data (e.g. back-end database server). Yet, we show that
integrated scheduling is essential at both the disk and
network to achieve service guarantee for stream-type
service irrespective of the background data service (e.g.
HTTP, FTP). Our current implementation supports both
server-array version of HTTP and STP services with load-
sharing among servers, scalable server capacity, and
server-level fault-tolerance.

Acknowledgements

The research and implementation are supported by the
Hong Kong Government Industrial Department.

References

[1] Y.B. Lee, P.C. Wong, "A Server Array Approach for
Video-on-demand Service on Local Area Networks, "
IEEE INFOCOM ‘96, San Francisco, USA, March 25-28.

[2] R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B.
Lyon, “Design and Implementation of the SUN Network
File System,” In Proceedings of the Summer Usenix
Conference, 1985.

[3] J. H. Howard, M. J. Kazar, S. G. Menees, D. A. Nichols,
M. Satyananrayanan, R. N. Sidebotham, and M. J. West,
“Scale and Performance in a Distributed File System,”
ACM Transactions on Computer Systems, vol. 6(1),
1988.

[4] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E.
Okasaki, E. H. Siegel, D. C. Steere, “Coda: A Highly
Available File System for a Distrbuted Workstation,”
IEEE Transactions on Computers, vol. 39(4), pp. 447-
59, 1990.

[5] F.A. Tobagi, J. Pang, "StarWorks - A Video
Applications Server," IEEE COMPCON Spring ’93.

[6] P.V. Rangan, H.M. Vin, S. Ramanathan, "Designing an
On-Demand Multimedia Service," IEEE
Communications Magazine, Vol.30, No.7, July 1992, pp.
56-65.

[7] J. Y. Hui, E. Karasan, J. Li, and J. Zhang, “Client-Server
Synchronization and Buffering for Variable Rate
Multimedia Retrievals,” IEEE Journal on Selected Areas
in Communications, vol 14(1), January 1996.

[8] WebStone 2.0, Silicon Graphics Inc.,
http://www.sgi.com/Products/WebFORCE/WebStone.

[9] Hypertext Transfer Protocol - HTTP/1.0, RFC1945,
http://ds.internic.net/rfc/rfc1945.txt.

Hardware/Software Platforms
Clients Intel PCI-based 486DX-66 or P5 PCs
Servers Intel PCI-based Pentium-90 PCs with 32MB RAM
Server Storage 8 GB (An array of four SCSI-II 2GB harddisks)
Network PCI-based 100 Mbps FastEthernet
Switch 16x16 Bay Networks 28115 FastEthernet Switch
Web Browser Netscape Navigator, Microsoft Internet Explorer,

and WebStone (benchmarking)
Video Decoder Sigma Designs RealMagic MPEG decoder
Client Operating System Microsoft Windows for Workgroup with Microsoft TCP/IP-32

or Windows 95
Server Operating System Microsoft Windows NT 3.51

Table 1. Testbed Configurations.

Packet Switch
(Ethernet,

FastEthernet,
ATM, etc.)

Server 1

Server 2

Server N

.

.

.

Client StationsMultimedia Server Array

. . .

. . .

.

.

.

Figure 1. Server Array Architecture.

b0,1 b0,2 b0,3b0,0

b1,1 b1,2 b1,3b1,0

b2,1 b2,2 b2,3b2,0

b3,1 b3,2 b3,3b3,0

b4,1 b4,2 b4,3b4,0

Stripe

Servers

Stripe unit

S0 S1 S2 S3

Figure 2. Storage Striping.

a5 a9 a13a1

a6 a10 a14a2

a7 a11a3

a8 a12a4

Servers

S0 S1 S2 S3

b3 b5 b7b1

b4 b6 b8b2

b11 b13b9

b12 b14b10

a16a15

Large Object A (UNIT_SIZE = 4)

.

.

.

. . .

b16b15

Small Object B (UNIT_SIZE = 2)

. . .

Macro-blocks

Micro-blocks

Figure 3. Dynamic Object Placement Scheme.

Communications network

Integrated Transmission Scheduler (ITS)

Unreliable Datagram Protocol
(UDP)

IP, IPX, ATM

Reliable Datagram
Protocol (RDP) Data Transport

Protocol (DTP)

Stream Transport
Protocol (STP)

Integrated Services Server (ISS)

HyperText Transfer
Protocol (HTTP)

File Transfer
Protocol (FTP)

Integrated
Disk

Scheduler
(IDS)

Disk Driver

Server Array
Directory Services

(SADS)

Figure 4. Multimedia Server Array System.

Algorithm: Integrated Disk Scheduler
While (not terminate)
{
 for (i=0; i<L; i++)
 {
 if (Cdisk is reached)
 {
 wait for one request to complete.
 }
 if (Qi is not empty and
 Ci is not exceeded)
 {
 Remove one request from Qi
 and submit to disk driver.
 Reset i=0.
 }
 }
}

Figure 5. The Integrated Disk Scheduler
Algorithm.

UDP

RDP
DTP

Transmission
Scheduling
(Static Priority with Y queues)

Traffic Shaping
(Batch-Round-Robin with Z queues)

Q0 Q1 QY-1

. . .

. . .

Figure 6. The Integrated Transmission Scheduler.

WebStone Standard Retrieval Distribution

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0.45
0.5

500 5000 50000 500000 5000000

Object Size (Bytes)

P
ro

b
ab

ili
ty

Figure 7. WebStone retrieval distribution.

HTTP Throughput Vs Object Size

0

500000

1000000

1500000

2000000

2500000

1 10 100 1000 10000 100000 1000000 10000000

Object Size (Bytes)

T
h

ro
u

g
h

p
u

t
(B

p
s)

Figure 8. HTTP Throughput versus Object Size.

1 Server 2 Servers 4 Servers
0

100000

200000

300000

400000

500000

600000

700000

800000

T
h

ro
u

g
h

p
u

t
(B

p
s)

1 Server 2 Servers 4 Servers

Per-Server HTTP Throughput without Dynamic Object Placement

Figure 9. Per-server HTTP throughput for 1, 2,
and 4-servers server array without Dynamic

Object Placement.

0 5K 50K 250K Duplication
0

100000

200000

300000

400000

500000

600000

700000

800000

T
h

ro
u

g
h

p
u

t (
B

p
s)

0 5K 50K 250K Duplication

Minimum UNIT_SIZE

Per-Server HTTP Throughput with Dynamic Object Placement

Figure 10. Per-server throughput for 4-servers
server array with Dynamic Object Placement.

Figure 11. Server CPU loading for 1, 2, and 4-
servers server array versus number of STP

sessions.

Throughput Comparisons (20 HTTP Clients)

0

500000

1000000

1500000

2000000

2500000

0 2 4 6 8 10
of STP Clients

T
h

ro
u

g
h

p
u

t
(B

p
s)

HTTP

STP

Total

Figure 12. STP versus HTTP throughput for
varying STP loading.

Mean System Time

0

200

400

600

800

1000

1200

1400

1600

1800

0 2 4 6 8 10

of STP Clients

S
ys

te
m

 T
im

e
(m

s)

HTTP

STP

Figure 13. Mean system time for HTTP and STP
for 20 HTTP clients and varying STP loading.

