
Adaptive Scheduling of Data Transfer
in P2P Applications over
Asymmetric Networks

Yuan Pan and Jack Y. B. Lee
Dept of Information Engineering

The Chinese University of Hong Kong
{py007, yblee}@ie.cuhk.edu.hk

Abstract—The success of peer-to-peer (P2P) applications hinges
on users’ willingness to contribute their network bandwidth to
serve other peers. However if the upload data rate to other peers
is too high it could severely degrade the download throughput in
an asymmetric network such as ADSL, even if the downlink has
abundant bandwidth available. Experiments revealed that the
download throughput degradation is in fact not caused by
congestion in the uplink, but caused by increased queuing delay
in the uplink path during high upload data rates. This paper
tackles this problem by developing an adaptive algorithm to
monitor the uplink queuing delay and adjust the upload data rate
limit dynamically so that the download throughput will not be
adversely affected. Experiments conducted using an open-source
P2P software showed that the proposed algorithms can increase
the downlink utilization over a wide range of network
configurations (and over 200% increase in some cases) by
automatically adjusting the upload data rate limit. The
algorithms do not require any user intervention and can be
readily incorporated into existing P2P systems.

Key Terms—asymmetric network, P2P, scheduling, TCP.

I. INTRODUCTION
The success of peer-to-peer (P2P) applications hinges on

users’ willingness to contribute their unused storage and
network bandwidth to serve other peers. While broadband
residential networks have become commonplace in many
countries around the world, many of them offer broad
bandwidth only in the downlink, i.e., from ISP to user host. By
contrast the uplink bandwidth is typically significantly lower,
ranging from tens to hundreds of Kbps as compared to
downlink’s multi-Mbps bandwidth. This is particularly
common in residential networks built on ADSL and xDSL
technologies [1].

While this type of bandwidth-asymmetric network does not
preclude the use of P2P applications, it nonetheless creates a
new problem for such applications when the data are
transported over TCP. Specifically, in P2P applications such as
BitTorrent many users have observed that if the upload data
rate is too high, e.g., close to the uplink bandwidth limit, then
the achievable download data rate will be severely degraded.

To illustrate this problem we conducted an experiment as

depicted in Fig. 1 and plot the achievable download data rate
versus upload data rate for a P2P software called Azureus [2],
which is an implementation of BitTorrent. This software allows
the user to configure the maximum upload data rate and
through this feature we can clearly see its impact on the
download data rate, which was drastically reduced from around
900 Kbps down to less than 200 Kbps when the upload data
rate limit is increased beyond 120 Kbps (close to the 125 Kbps
uplink bandwidth limit).

To remedy this problem many P2P applications (e.g.,
Azureus, utorrent, BitTorrent, etc.) allow the users to manually
configure the upload data rate limit so that a reasonable upload
data rate can be used (or else P2P will not work) while keeping
the download data rate to fully-utilize the broadband network
downlink. Clearly this ad hoc feature is not very user-friendly
nor can it adapt to the underlying network properties
automatically.

This work investigates this performance problem in
running P2P applications over asymmetric networks by first
analyzing the problem to identify the mechanics leading to the
download data rate degradation, and then develops two
versions of adaptive algorithm called Adaptive-DRC to control
the upload data rate limit without the need for any human
intervention. The adaptive algorithms have been implemented
into the open source Azureus P2P software and were shown to
be effective over a wide range of network environments.

The rest of the article is organized as followed: Section 2
reviews some previous related works; Section 3 analyzes the
mechanics behind the performance problem and Section 4
develops the adaptive rate control algorithms. Section 5
evaluates the performance of the proposed adaptation
algorithm and we summarize this work in Section 6.

II. LITERATURE REVIEW
Bandwidth-asymmetric broadband networks have existed

for decades. Therefore numerous researchers had developed
solutions to tackle performance problems in such networks. In
this section, we will review more recent works which tackled
the problem in the context of having competing traffic in the
uplink. We will divide the solutions into three categories

namely, network layer approaches, transport layer approaches,
and application layer approaches.

A. Network Layer Approaches
An effective network layer approach is to implement

priority queuing in the network device connected to the uplink.
The principle is to schedule packets from the receiver based on
their packet type and gives higher priority to Ack packets [3-5].
Thus even under heavy uplink data traffic Ack packets will still
not be affected.

B. Transport Layer Approaches
Transport layer approaches rely on modification to the

transport protocol of the sender, the receiver, or both. The
principle is to enable the sender transport to distinguish
downlink congestion from uplink congestion, and only react to
the former during congestion control [6-8]. Specifically, Since
TCP uses RTT to provide congestion control, both uplink
congestion and downlink congestion will affect the sending
rate which is undesirable. If the transport can separate RTT into
FTT (forward trip time) and BTT (backward trip time), then it
will be able to react to downlink congestion only and become
immune to uplink congestion. This can be accomplished using
the TCP timestamp extension described in RFC1323 [9].

C. Application Layer Approaches
Application layer approaches refers to those solutions

which can be implemented entirely within an application,
without modification to the lower layers such as the transport
protocol, the network protocol and network devices. Our
survey revealed only one attempt in the form of an
implementation called Auto-Speed in the Azureus [2] P2P
client software. The Auto-Speed module in Azureus was not
well-documented and based on our analysis of the source codes
we found that it controls Azureus’s upload data rate limit by
monitoring the RTT to a Google host. An adaptive algorithm is
then used to increase and decrease the limit based on variations
in the continuously measured RTT.

D. Comparisons and Contributions
The Adaptive-DRC algorithm proposed in this paper

belongs to the application layer and thus can be readily
deployed without the need to modify network devices (as in
network layer approaches) or operating systems (as in transport
layer approaches).

Secondly, our experimental results revealed that the
download throughput loss is in fact primarily due to the
increased queueing delay in the uplink rather than packet losses.
Thus by monitoring the RTT a P2P application can detect the
onset of uplink congestion and react by cutting down the
upload data rate limit to prevent congestion from occurring.

Thirdly, our results also revealed that the Auto-Speed
implementation in Azureus cannot adapt to different network
configurations and in many cases, underutilizes the uplink
bandwidth. This is undesirable as the performance of a P2P
system hinges on the amount of bandwidth its peers can
contribute.

Last but not least, the proposed algorithm had been
implemented into the open source Azureus P2P software which

enabled us to obtain performance results from a real-world P2P
system. We conducted experiments over a wide range of
asymmetric network configurations, and show that the
proposed algorithm can strike a good balance between uplink
utilization and downlink throughput performance.

III. ANALYSIS OF THE UPLINK BOTTLENECK
To find out the reason for download throughput degradation

we set up experiments as depicted in Fig. 1 using the NISTnet
[10] emulator to emulate bandwidth asymmetry in the access
network. All peers in the system run the Azureus P2P
application. The system is set up so that the peer behind the
access network – ADSL user, shares files through BT protocol
with the external peer in the external network. As our focus is
on the access network we do not limit the upload data rate of
the external peer so that the download throughput will not be
limited by the external peer. During the experiment, we
gradually increase the upload limit of ADSL user every 10
seconds until it reaches the uplink capacity. There is no other
competing traffic going through the link.

Figure 1. A P2P host running behind a bandwidth-asymmetric network

Figure 2. Effect of upload data rate on download throughput

Figure 3. RTT and packet loss rate vs uplink throughput

Figure 4. Comparison of RTT distributions at low and high upload data rates

TCP’s throughput performance primarily depends on the
path RTT and the packet loss rate [11-12]. In the experiments
we measured the following at the ADSL user: download
throughput, upload throughput, RTT, and packet loss. The
results are summarized in Fig. 3.The results clearly show that
RTT increased consistently with higher upload throughput as
congestion built up. By contrast the packet loss rate remained
at a low level even at high upload data rates. Contrasting this
with the download throughput in Fig. 2 reveals that the
download throughput degradation beginning at the upload data
rate of 640 Kbps is in fact primarily due to the increased RTT.
The implication of this observation is RTT can be used as an
indicator of uplink congestion so that the system can react by
controlling the upload data rate limit to prevent congestion
from occurring.

Taking it further we conducted experiments to measure the
RTT distributions when the uplink data rate limit was set to
400Kbps and 1000 Kbps respectively and plotted their RTT
distribution histograms in Fig. 4. With the low upload data rate
limit of 400 Kbps the RTT distribution has a small mean value
of 204 ms and a narrow distribution (STD=13 ms). It is also

one-sided as the minimum RTT is bounded from below by the
propagation delay.

By contrast, at the high upload data rate limit of 1000 Kbps
the RTT distribution has a significantly larger mean value (506
ms) and the standard deviation is far larger as well (65ms).
Comparing the two distributions suggests that it is possible to
detect and distinguish them so that the application can
automatically adjust the upload data rate limit to prevent
congestion in the uplink. We will discuss the corresponding
algorithms in the next section.

IV. ADAPTIVE UPLOAD DATA RATE CONTROL
The principle of the proposed adaptive upload data rate

control algorithms – called Adaptive-DRC, is to detect the
increase in RTT caused by the uplink congestion. This can be
broken down into three sub-problems: (i) RTT estimation; (ii)
detection of the onset of congestion – pre-congestion detection;
and (iii) adaptation of the upload data rate limit. We present
below two versions of Adaptive-DRC where they differ in the
way the upload data rate limit is adapted.

A. RTT Estimation
The first hurdle in RTT estimation is that it needs to be

performed at the application layer. Thus while the TCP
transport already has its own estimation of RTT, it may not be
possible for the application to directly access it.

In case this is not possible the application will need to
implement its own RTT estimation. There are many ways to
accomplish this and for simplicity in our implementation we
simply invoke the operating system’s ping utility to measure
RTT to a designated external host.

Now the next question is to find a suitable external host to
perform the measurement. This is in fact not trivial in practice
for two reasons. First, the external host must not be located
behind a NAT (or firewall) as most NATs ignore ping requests
for security reasons. This can be challenging as in a P2P
network it is common for many of the users to be located
behind NATs. Second, the external host must be configured to
respond to ping requests. Again due to security reasons most
personal firewalls, many already built-in as part of the
operating system, running in the user host will block and
ignore ping requests. Similar to the first problem this can be
solved by implementing RTT measurement within the
application’s own protocols.

As both are primarily implementation issues we simply
adopted the ping command as the RTT measurement tool. The
external host we used in our experiments is a fixed IP address
resolved from the domain name www.google.com, which
consistently responds to ping requests.

B. Pre-Congestion Detection
Pre-congestion detection is divided into two phases:

initialization and monitoring. During initialization when the
P2P application is first started, the application will only allow
data to be downloaded from external peers so that the uplink
will not be congested by upload traffic. The application then
conducts RTT measurements to compute the mean RTT and its
standard deviation when the uplink is in non-congested state.

These statistics will serve as the baseline for comparisons made
in the monitoring phase.

In the monitoring phase the application will carry out RTT
measurements periodically and compare the newly measured
RTT against the baseline values to determine if the uplink is
developing the onset of congestion, in which case the measured
RTT is expected to increase. To compensate for the inherent
variations in RTT measurements, we need to devise a threshold
above the mean RTT to serve as the detection criterion.

Let d be the newly measured RTT, then according to the
Chebychev’s inequality [13]:

2
1)Pr(
k

kX ≤≥− σµ (1)

where µ and σ are the mean and standard deviation of the RTT
respectively, which can be estimated from the measurements
during the initialization phase. By choosing appropriate value
for k, we can control the probability of false positive to within
1/k2, i.e., ≤ 1% for k=10.

C. Upload Data Rate Limit Adaptation
The upload data rate limit is adjusted according to the result

from pre-congestion detection. The principle is to increase the
upload data rate limit when the uplink is not congested and
decrease it when the onset of congestion develops. We
developed two versions of adaptive algorithm: the first one is
based on Additive Increase Multiplicative Decrease (AIMD) as
in TCP’s congestion control algorithm, and the second one is
based on Multiplicative Increase Multiplicative Decrease
(MIMD).

Specifically, after each periodic RTT measurement d
conducted in the monitoring phase the upload data rate limit is
adjusted according to:

⎩
⎨
⎧

<=−+
>−

=
σµ
σµ
kdifU

kdifU
U new)(,1

)(,2/
 (2)

for the AIMD version and

⎩
⎨
⎧

<=−×
>−

=
σµ
σµ
kdifU

kdifU
U new)(,2

)(,2/
 (3)

for the MIMD case. In both cases Unew is the new upload data
rate limit and U is the current upload throughput as measured
internally by Azureus, which is the running average of the
upload rate for the past 3 seconds. We will compare the
performance of these two adaptation algorithms in the next
section.

V. PERFORMANCE EVALUATION
We evaluate the performance of the proposed Adaptive-

DRC algorithms in the context of BitTorrent using Azureus
version 3.0 as the implementation. Experiments were
conducted in a controlled network as depicted in Fig. 1. We
conducted experiments for 8 asymmetric network
configurations listed in Table 1, which represent the commonly
deployed ADSL broadband services in the industry [14].

TABLE I. ASYMMETRIC NETWORK CONFIGURATIONS

Network
Configurations

Downlink
Bandwidth

Uplink
Bandwidth

1 256 Kbps 64 Kbps
2 1 Mbps 64 Kbps
3 2 Mbps 256 Kbps
4 2 Mbps 512 Kbps
5 4 Mbps 1 Mbps
6 8 Mbps 640 Kbps
7 8 Mbps 1 Mbps
8 12 Mbps 1 Mbps

All hosts ran the Windows XP operating system with
default installation settings. The host machines were verified to
be able to saturate the downlink and uplink so that the hosts
will not be the bottleneck in the experiments.

We captured the network traffic using Wireshark[15] and
calculated the download and upload throughputs from the
packet trace files. Each experiment run lasted for 5 minutes and
a separate set of experiments were conducted for the following
four scenarios on ADSL user host: (i) no upload limit; (ii)
Auto-Speed; (iii) Adaptive-DRC: AIMD; and (iv) Adaptive-
DRC: MIMD

In scenario (i) we did not limit the upload data rate and
simply let TCP control the data rate via its built-in congestion-
control algorithm. In scenario (ii) we enabled the Auto-Speed
feature in Azureus to control the upload data rate limit. In
scenario (iii) and (iv), we ran the proposed Adaptive-DRC
AIMD version and MIMD version respectively.

We define link utilization to be the ratio between actual
throughput achieved and the link bandwidth available. For
example, a download throughput of 500 Kbps over a downlink
of 1 Mbps will give a link utilization of 500K/1M=0.5.

We compare the link utilization for the downlink in Fig. 5
for the 8 network configurations listed in Table 1. First, without
any upload limit the download throughput suffered
significantly as expected. The extent of degradation is
correlated to the downlink-to-uplink bandwidth ratio. For
example, the poorer performing configures (network
configurations 2, 3, 6, 7, 8) have larger downlink-to-uplink
bandwidth ratios (with ratios of: 16, 8, 13, 8, 12) than the better
performing ones (at a ratio of 4 for network configurations 1, 4,
and 5). This can be explained by the observation that the
amount of TCP ACKs generated on uplink is proportional to
the download throughput. Thus smaller downlink-to-uplink
bandwidth ratio will have relatively more uplink bandwidth for
the upstream TCP ACK traffic.

Second, the performance of Auto-Speed is not consistent
across the 8 network configurations. It performed best in the
higher bandwidth configurations (4~8) but in configurations 1
and 2 it had nearly the lowest downlink utilization of all four
scenarios.

Moreover, if we consider also the uplink utilization in Fig.
6 then we can see the reason for the observed results. The
Auto-Speed algorithm turned out to be too aggressive in the
uplink for network configurations 1 and 2 but too conservative
for network configurations 4~8, resulting in uplink utilization
lower than 0.3.

Figure 5. Comparison of downlink bandwidth utilizations

Figure 6. Comparison of uplink bandwidth utilizations

Third, performance of the proposed Adaptive-DRC is
substantially more consistent by comparison. For the AIMD
version, we can achieve downlink utilization above 0.8 and
uplink utilization varies between 0.28 and 0.5. While for
MIMD version, the downlink and uplink utilizations were
maintained within 0.58 to 0.8, and 0.5 to 0.67 across the 8
network configurations. Generally speaking AIMD is more
conservative in utilizing the uplink (thus leading to higher
downlink throughput) while MIMD can achieve higher uplink
utilization (with slightly lower downlink throughput). More
importantly both Adaptive-DRC algorithms perform
consistently across all 8 network configurations and thus can
reliably strike a balance between uplink and downlink
utilizations without the need for human intervention.

VI. CONCLUSION
This work investigated the performance issues of running

P2P applications in asymmetric network environments.
Without proper control of upload data rate the download
throughput will be adversely affected due to significantly
increased queueing delay in the uplink. This problem can be

tackled at various layers and this work proposed Adaptive-
DRC algorithms which can be implemented entirely within the
application layer so that it can be readily incorporated into
existing P2P applications without need to modify operating
systems or network routers.

ACKNOWLEDGMENT
The authors would like to thank the reviewers for their

comments in improving this paper. This work was funded in
part by the Shun Hing Institute of Advanced Engineering of the
Chinese University of Hong Kong under project number MMT
9/07.

REFERENCE
[1] “ADSL overview”, [Online]. Available:

http://www.wowarea.com/dyn/vge.php/g_1/k_1/o_0 [Accessed: Apr. 25,
2009]

[2] “Azureus FAQ”, May, 2008. [Online]. Available:
http://wiki.vuze.com/index.php/Azureus_FAQ#Azureus_FAQ_.28Frequ
ently_Asked_Questions.29. [Accessed Apr.25, 2009]

[3] H. Balakrishnan, V. N. Padmanabhan and R. H. Katz, “The effects of
asymmetry on TCP performance,” in Proceedings of the 3rd annual
ACM/IEEE international conference on Mobile computing and
networking, p77-89, Sept. 1997.

[4] F. Louati, C. Barakat, and W. Dabbous, “Handling Two-Way TCP
Traffic in Asymmetric Networks,” HSNMC 2004, LNCS 3079, pp.233-
243, Sept 2004.

[5] W. Al-Khatib and K. Gunavathi, “A New Approach to Improve TCP
Performance over Asymmetric Networks,” Electronics and Electrical
Engineering, No. 7(71), p. 13-18, 2006.

[6] Elloumi, H. Afifi, and M. Hamdi, “Improving Congestion Avoidance
Algorithms for Asymmetric Networks,” in Proceedings of ICC’97,
Montreal, 1997, Vol. 3, pp. 1417-1421.

[7] H. Afifi, O. Elloumi and G. Rubino, “A Dynamic Delayed
Acknowledgement Mechanism to Improve TCP Performance for
Asymmetric Links,” in Proceedings of theThird IEEE Symposium on
Computers and Communications, 1998, pp. 188-192.

[8] C. Fu, L. C. Chung and S. C. Liew, “Performance Degradation of TCP
Vegas in Asymmetric Networks and Its Remedies,” in Proceedings of
the IEEE International Conference on Communications, 2003, Vol. 7,
pp. 42-44.

[9] V. Jacobson, R. Braden, D. Borman, “TCP Extensions for High
Performance,” Request for Comments 1323, May 1992.

[10] M. Carson and D. Santay, “NIST Net – A Linux-based Network
Emulation Tool”, Computer Communication Review, June 2003.

[11] M. Mathis, J. Semke, J. Mahdavi, T. Ott. “The macroscopic behavior of
the TCP Congestion Avoidance algorithm,” Computer Communications
Review, vol. 27, no. 3, p67-82, July 1997.

[12] J. Padhye, V. Firoiu, D. Towsley, J. Kurose. “Modeling TCP
throughput: a simple model and its empirical validation,” in Preceedings
of the ACM SIGCOMM ’98 conference on Applications, technologies,
architectures, and protocols for computer communications, p303-314,
Sep. 1998.

[13] Mendenhall, R. Beaver, B. Beaveer, A Brief Introduction to Probability
and Statistics, Wadsworth Group, 2002.

[14] “ADSL Broadband Packages”. [Online].
Available:http://www.promotion.hinet.net/adsl_hot_03.htm, [Accessed,
Apr.25, 2009]

[15] U. Lamping, R. Sharpe, and E. Warnicke, “Wireshark User’s Guide”.
[Online]. Available: http://www.wireshark.org/docs /. [Accessed Apr.25,
2009].

