Distributed Video Systems Chapter 7 Parallel Video Servers Part 1 - Introduction and Overview

Jack Yiu-bun Lee Department of Information Engineering The Chinese University of Hong Kong

	Jack Y.B. Le
• 7.1 Introduction	
 7.2 Video Distribution Architectures 	
 7.3 Server Striping Policies 	
 7.4 Video Delivery Protocols 	
 7.5 Representative Studies 	

Pottlonooko et Video Server	
Bollienecks at video Server	
 Protocol and I/O processing 	
 CPU time could be exhausted 	
 Data retrievals 	
 Disk bandwidth could be exhausted 	
 Network transmissions 	
 Network bandwidth could be exhausted 	
Others	
 System bus bandwidth could be exhausted 	
 System's I/O interfaces could be exhausted 	
•	

Examples	
 Small-scale systems (~100 streams) 	
Starlight Networks	
 PC-based, serves up to 100 users or with a disk array and fast network con 	n a dedicated machine nnections.
 Microsoft NetShow 	
 Wintel-based, serves up to 60 users with a disk array and fast network con 	on a Wintel machine nnections.
 Large-scale systems (~1000 streams 	5)
The Magic Video-on-Demand System	n
 Proprietary massively-parallel superce hardware and interconnection networe 	computer with custom rks.
 Oracle nCube Video-on-Demand Sys 	stem
 nCube-based, massively-parallel sup 	percomputer.

5.1 Introduction

- Problems
 - Upgrade Path
 - Single-server VoD systems
 - not incrementally upgradable;
 - requires replacement of hardware to upgrade;
 - less cost effective since existing hardware has to be discarded.

Jack Y.B. Lee

9

- Partitioned VoD system
 - incrementally upgradable by adding more servers and repartitioning videos among them.
- Replicated VoD system
 - incrementally upgradable by adding more servers and replicating videos among them.

Distributed Video Systems - Parallel Video Servers - Part 1

5.1 Introduction Jack Y.B. Lee Problems Fault Tolerance Single-server VoD systems Can survive disk failures using RAID - Can survive power failures using UPS and redundant power supplies - Can survive memory failures using ECC memory - Very difficult to survive network failures - Impossible to survive server-level failures Partitioned VoD system - Failures could be isolated, some video titles are affected and becomes unavailable. Replicated VoD system - Failures could be isolated, some users are affected with service unavailability. Distributed Video Systems - Parallel Video Servers - Part 1 10

5.2 Video Distribution Architectures

- Proxy-At-Client Architecture
 - Observations
 - A proxy serves one client only.
 - Each client communicates with all servers directly.
 - The parallel servers are not transparent to the clients.
 - To deliver *B* bytes of data from servers to a client, we need:
 - B bytes of data transmission (server-to-client) and
 - B bytes of data reception (client).
 - A proxy failure affects one client only.
 - A server failure can be masked by redundancy. I.e. complete fault tolerance is possible.

Distributed Video Systems - Parallel Video Servers - Part 1

5.3 Server Striping Policies Jack Y.B. Lee
Scope of Striping
Wide Striping
Stripe a video title over all servers in the system.
Short Striping
Stripe a video title over a subset of servers only.
Striping Units
Stripe units are of the same duration in terms of playback.
Space Striping
Stripe units are of the same size.

17

Jack Y.B. Lee

	Jack Y.B. Lee
Time Striping	
 Advantages 	
 Scheduling may be simpler due to the con nature of the stripe units. 	stant-time
 May be easier to support interactive contro forward by frame skipping. 	ol such as fast-
 Disadvantages 	
 Potential load imbalance among servers. F MPEG has I, P, B frames of generally difference 	For example, erent sizes.
 Stripe using GOP can improve load balance 	ce.
 More complicated storage and retrieval sc to varying stripe unit size. 	heduling due
 Note that sub-frame striping can achieve p balancing using equal-sized frame fragme 	perfect load ints.

Service Models	
Server Push	
 The servers schedule transmissions to a client. 	
Problem	
 If multiple servers transmit to the same client at time, congestion will occur, leading to packet los 	the same sses.
Solution	
 Some form of co-ordination (i.e. synchronization the server must be performed to avoid congestion 	n) between on.
Additional Problems	
 The synchronization protocol must be scalable; 	
 and tolerance to node failures. 	

Detecting and Masking Server Fall	ilures
Problem	
 Given there are redundant data a we deliver these redundant data t in case a server failure occurs? 	t the servers, how do to the client for recovery
 Solution 1: Forward Error Correct 	ion (FEC)
 Retrieve and transmit redundant of 	data all the time.
 Constant bandwidth overhead of number of redundant video blocks N_s-servers system. 	<i>K</i> /(<i>N_s-K</i>) where <i>K</i> is the s per parity group in a
 No failure detection is necessary, be ready at the client when a serv 	the redundant data will ver fails.

5.4 Video Delivery Protocols

- Jack Y.B. Lee
- Detecting and Masking Server Failures
 - Solution 2: On-Demand Correction (ODC)
 - Retrieve and transmit redundant data only after a server failure is detected.
 - No overhead when there is no server failure.
 - Even after a server failed, the total bandwidth requirement remains the same. (Why?)
 - Server failure detection is required, though.
 - Additional client buffering will be required to sustain continuous video playback while the system reconfigures itself for failure-mode operation.

Distributed Video Systems - Parallel Video Servers - Part 1

27

h ıs).
I

• Server	Array and RAIS (Lee et al. 1996)	
 Key 	Results	
• E	experimental and Benchmarks	
	- Linear capacity scaling from 1 to 4 servers.	
	- A PC server can support ~50 MPEG1 video s	treams.
	 Server memory requirement (incl. OS and even 64MB. 	erything) is
	 Client buffer requirement is <1MB. 	
	 Fault tolerant to single-server failure. 	
• T	heoretical	
	 System capacity is linearly scalable with the h admission scheduling. 	elp of
	 Server and client buffer requirement is fixed in scale of the system (i.e. number of servers). 	respective of

5.5 Representative Studies

Jack Y.B. Lee

• Comparisons

Researchers	Video Distribution Architecture	Server Striping Policy	Video Delivery Protocol	Server Fault Tolerance
Biersack et al. (Video Server Array)	Proxy-At-Client	Time Striping	Server Push	Striping w/ Parity; FEC
Bolosky et al. (Tiger Video Fileserver)	Proxy-At-Client	Space Striping	Server Push	Mirroring with Declustering
Buddhikot et al. (MARS)	Independent Proxy	Time Striping	Server Push	-
Freedman et al. (SPIFFI)	Proxy-At-Client	Space Striping	-	-
Lee et al. (Server Array & RAIS)	Proxy-At-Client	Space Striping	Client Pull	Striping w/ Parity; FEC and ODC
Lougher et al.	Independent Proxy	Space Striping	-	-
Reddy et al.	Proxy-At-Server, Independent Proxy	Space Striping	Server Push	-
Tewari et al. (Clustered Video Server)	Proxy-At-Server, Independent Proxy	Space Striping	Server Push	-
Wu and Shu	Proxy-At-Server, Independent Proxy	Space Striping & Time Striping	Server Push	-

IVEIEI EI IUES	Jack Y.B. Lee
This chapter's materials are based on:	
[1] Jack Y.B.Lee, "Parallel Video Servers - A Tutorial," IEEE Multimedia, vol.5(2), June 1998, pp.2	.0-28.
Other useful references:	
[2] C. Bernhardt, and E. Biersack, "The Server Array: A Scalable Video Server Architecture," High- Multimedia Applications, Kluwer Press, Boston, 1996.	-Speed Networks for
[3] W.J. Bolosky, J.S. Barrera, III, R.P. Draves, R.P. Fitzgerald, G.A. Gibson, M.B. Jones, S.P. Lu R.F. Rashid, "The Tiger Video Fileserver," <i>Proc. of the Sixth International Workshop on Netw</i> <i>System Support for Digital Audio and Video</i> . IEEE Computer Society, Zushi, Japan, April 1996.	evi, N.P. Myhrvold, work and Operating
[4] M.M. Buddhikot, and G.M. Parulkar, "Efficient Data Layout, Scheduling and Playout Contro NOSSDAV'95, Springer-Verlag, Berlin, 1995, pp.318-329.	ol in MARS," Proc.
[5] C.S. Freedman, and D.J. DeWitt, "The SPIFFI Scalable Video-on-Demand System," Proc. ACM Press, New York, June 1995, pp.352-363.	SIGMOD'95, ACM
[6] Y.B.Lee, and P.C.Wong, "A Server Array Approach for Video-on-demand Service on Local Are IEEE INFOCOM '96, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp.27-34.	ea Networks," Proc.
[7] P.C.Wong, and Y.B.Lee, "Redundant Array of Inexpensive Servers (RAIS) for On-Demand Mu Proc. ICC'97, IEEE Computer Society Press, Los Alamitos, CA, 1997, pp.787-792.	ultimedia Services,"
[8] P. Lougher, D. Pegler, D. Shepherd, "Scalable Storage Servers for Digital Audio and International Conference on Storage and Recording Systems 1994, IEE Press, London, 1994, pp.140	Video," Proc. IEE)-3.
[9] R. Tewari, R. Mukherjee, and D.M. Dias, "Real-Time Issues for Clustered Multimedia Serve Report RC20020, June 1995.	ers," IBM Research
[10] M. Wu, and W. Shu, "Scheduling for Large-Scale Parallel Video Servers," Proc. Sixth Symposi of Massively Parallel Computation, IEEE Computer Society Press, Los Alamitos, CA, 1996, pp.126-	ium on the Frontiers -133.
[11] C. Brendan, S. Traw, and J.M. Smith, "Striping Within the Network Subsystem," <i>IEEE Network</i> IEEE Press, New York, NY, 1995, pp.22-32.	k, July/August 1995,
[12] A.L. Drapeau, and R.H. Katz, "Striped Tape Arrays," Proc. 12th IEEE Symposium on Mass Sto	orage Systems, IEEE