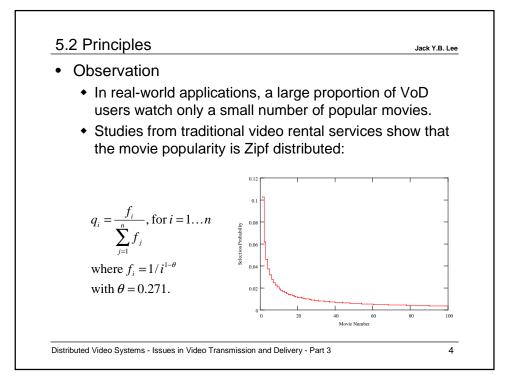
Distributed Video Systems

Chapter 6 Issues in Video Transmission and Delivery Part 3 - Batching, Caching, and Piggybacking

> Jack Yiu-bun Lee Department of Information Engineering The Chinese University of Hong Kong


<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

5.1 Introduction

- VoD technologies have been available for many years, why VoD services are still not popular?
 - It's expensive and not economically viable.
- How can cost be reduced?
 - By evolution of faster computer hardware, higher bandwidth network for the same price.
 - By taking advantage of economy of scales, i.e. using commodity hardware platforms like the PC.
 - E.g. parallel servers.
 - By intelligent ways of reducing the system requirement.
 - E.g. batching, caching, and piggybacking.

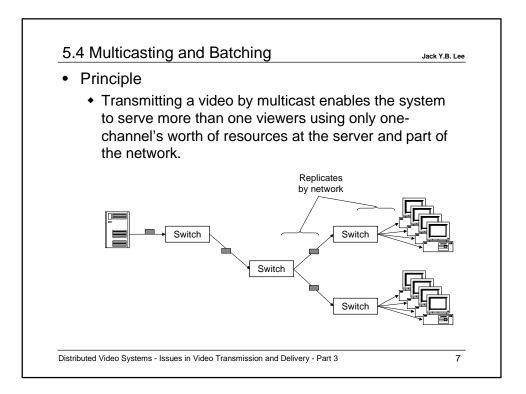
Distributed Video Systems - Issues in Video Transmission and Delivery - Part 3

3

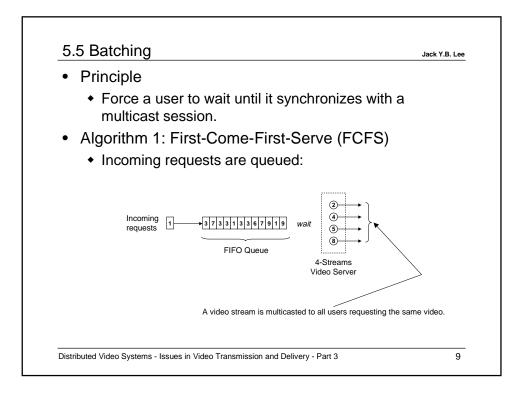
5.2 Principles

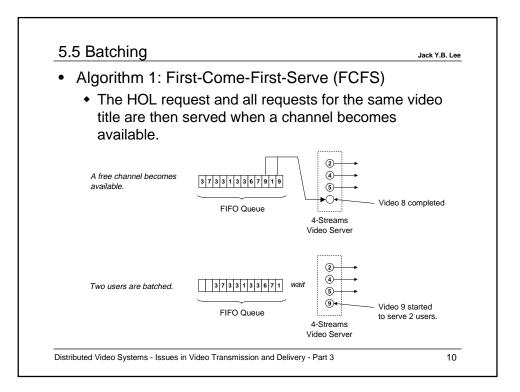
Motivation

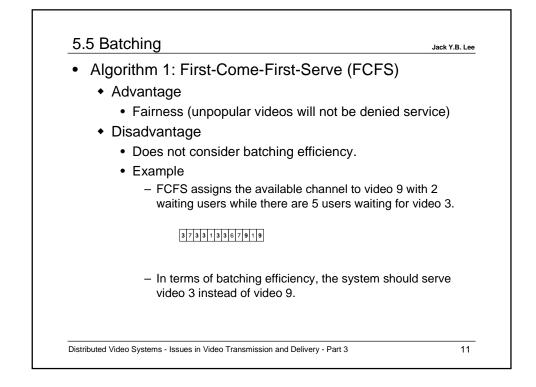
- The movie popularity is highly skewed.
- Many users are likely to watch the same movies.

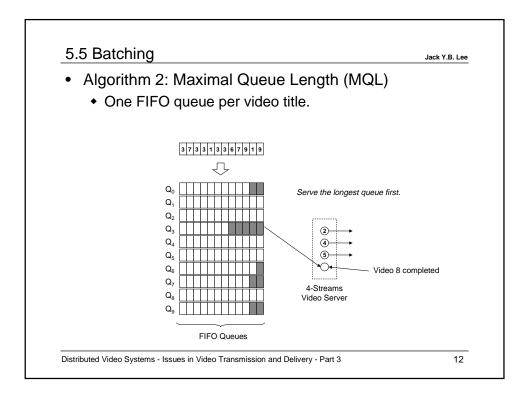

Jack Y.B. Lee

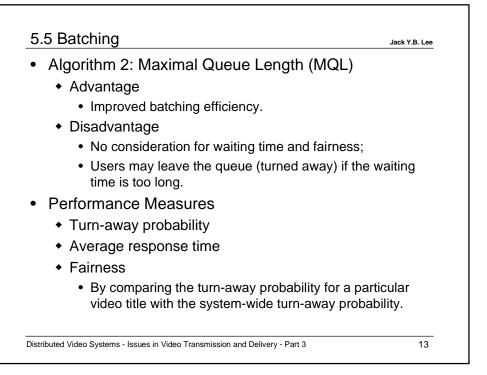
5

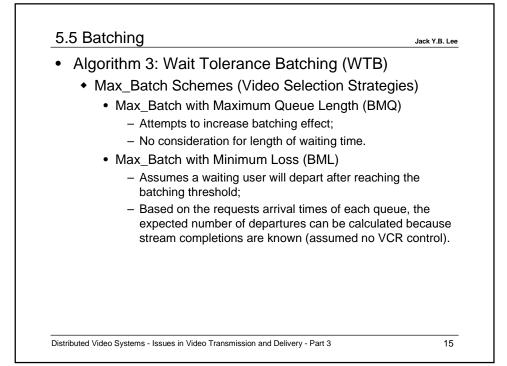

- Why not let the users share it?
- Share What?
 - Server
 - Share retrieved video data at the server by caching.
 - Network
 - Share transmitted video data by multicasting.
 - Client
 - Share received video data by buffering.

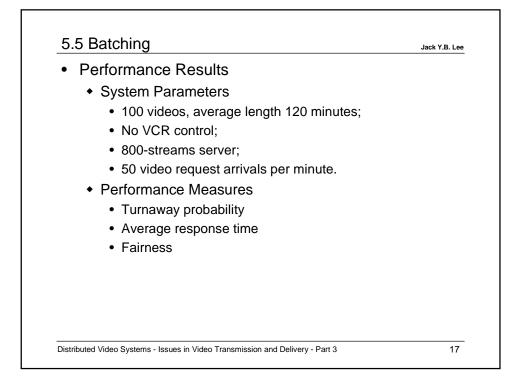

Distributed Video Systems - Issues in Video Transmission and Delivery - Part 3

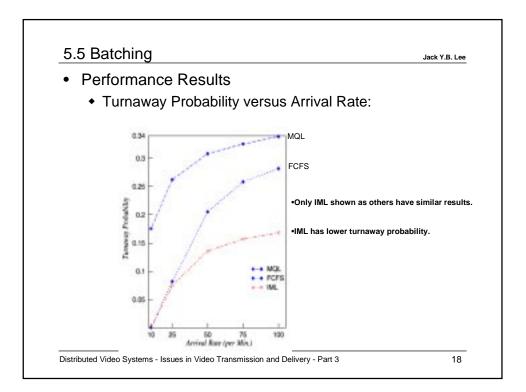

5.3 Caching At Server Jack Y.B. Lee Principle Keep retrieved video data in a cache for some time in case another user wants the same piece of data. Transmission Reused Disk Discard Problems How long/much to keep the retrieved video data? Keep all retrieved data or only selected data? · What is the tradeoffs in delay, and buffer? Can the gain offsets the cost incurred? Distributed Video Systems - Issues in Video Transmission and Delivery - Part 3 6

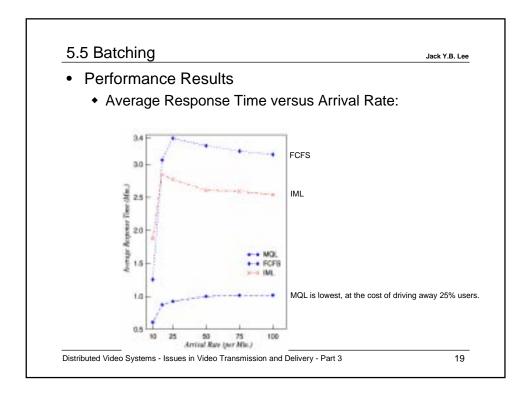


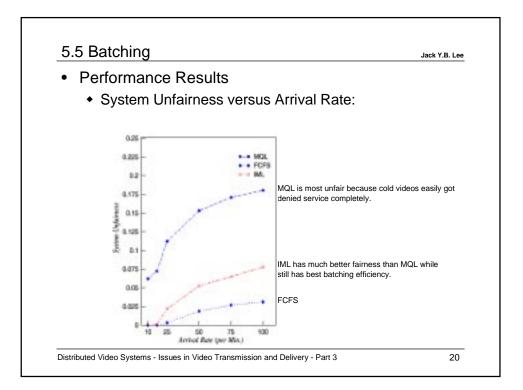

Problem				
 Video playback at different clients are synchronized. 	unlikely to be			
 Hence simply sharing a multicast video going to be very effective. 	o session isn't			
Solutions				
 Tradeoff Delay (e.g. Batching, NVoD) 				
 Tradeoff Buffer (e.g. Split and Merge) Tradeoff Quality (e.g. Piggybacking) 				

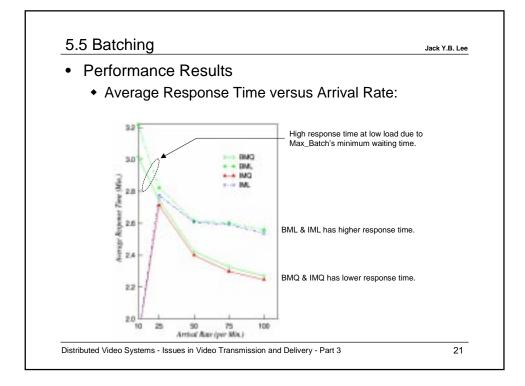


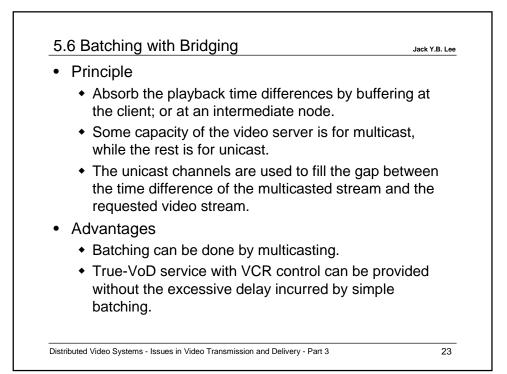


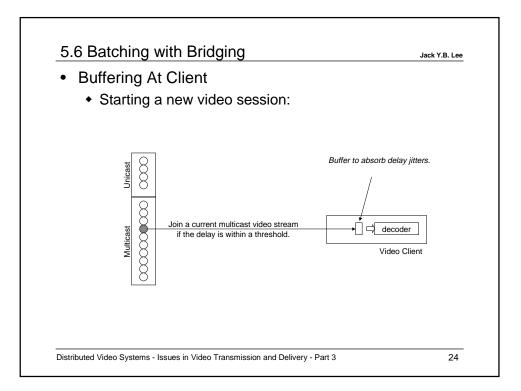


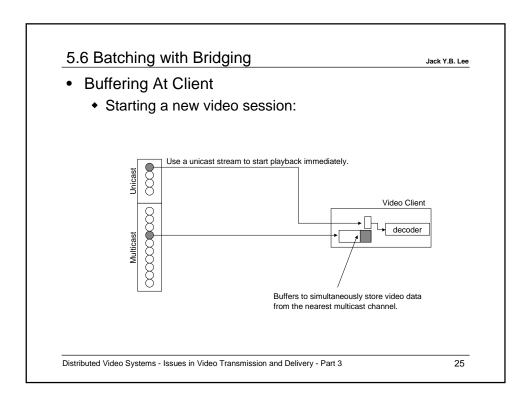

• /	Algorithm 3: Wait Tolerance Batching (WTB)			
	 Video titles are classified into two types: 			
	 hot videos (i.e. popular) and cold (unpopular) videos. 			
	 Max_Batch Schemes 			
	 A video title is available for scheduling only if some of its requests have waiting time exceeded a batching threshold. 			
	 If there are no eligible videos, unused channels remain idle. 			
	 There is a minimum waiting time on all requests. 			
	 The objective is to maximize batching. 			
	 The batching threshold is chosen based on the wait tolerance. 			

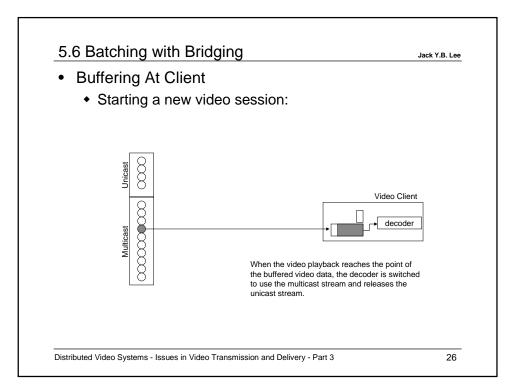



э.	5 Batching	Jack Y.B. Lee
•	 Algorithm 3: Wait Tolerance Batching (WTB) Min_Idle Schemes Batching is performed on hot videos only. Cold videos are always eligible for scheduling. No minimum wait time. The objective is to reduce response time and decreations of viewers for cold videos. 	ease
	 Schemes similar to BMQ and BML can also be dev for Min_Idle to form IMQ and IML. 	rised

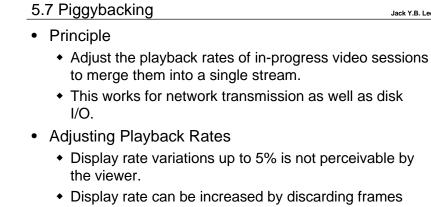








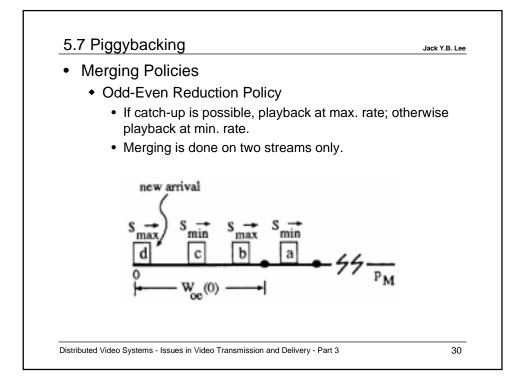
5.5 Batching	Jack Y.B. Lee
Conclusions	
 The four schemes (BML, BMQ, IML, and IMQ outperform the FCFS and MQL schemes.) generally
 Using MQL in selecting streams (i.e. BMQ, IM smaller response time (at the expense of fairn keeping the throughput close to that provided Loss schemes (i.e. BML, IML). 	ness) while
Remarks	
 No VCR actions is allowed. 	
 The average response time is in 2~3 minutes. not really true VoD, but is in fact a near VoD of 	
 The turn-away probability is fairly high (>10%), leading to a somewhat unsatisfactory service in practice. 	
 Note that 50 requests/min x 120 min = 6000 c served by a 800-streams server. 	ustomers


5.6 Batching with Bridging

- Buffering At Client
 - Observations
 - The unicast streams are not occupied for the entire duration of the movie, but for only a short time to bridge the gap between the playback schedule and the multicast schedule.
 - The buffers are essentially used to introduce delays into the multicast stream. By varying the amount of buffered data, the amount of delay can be controlled.
 - VCR functions can be supported by treating them as new sessions.
 - So the tradeoff in delay is compensated by the tradeoff in buffers (and some unicast streams).

Distributed Video Systems - Issues in Video Transmission and Delivery - Part 3

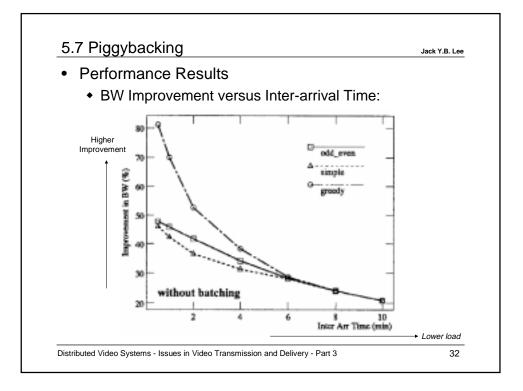
27

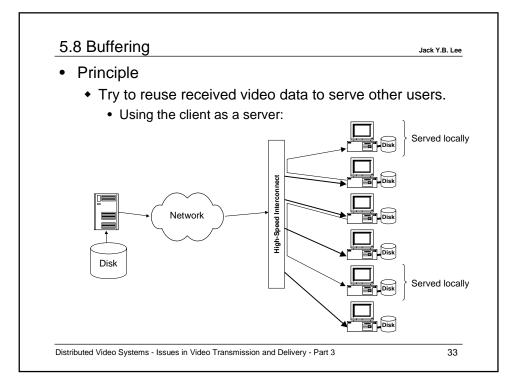

 Buffering At Client 	
Challenges	
 How many channels should be reserved for how many for multicast? 	or unicast, and
 How to assign multicast channels to video Static or dynamic? 	titles?
 VCR functions could be blocked if all unica are occupied. 	ast channels
 A video session could also be blocked after interaction if all channels become occupies video title is being remulticasted periodical 	d unless the
 Is the scheme (and batching in general) ef popularity models other than Zipf? 	fective for
 Can the gain offset the additional cost in b 	uffering?

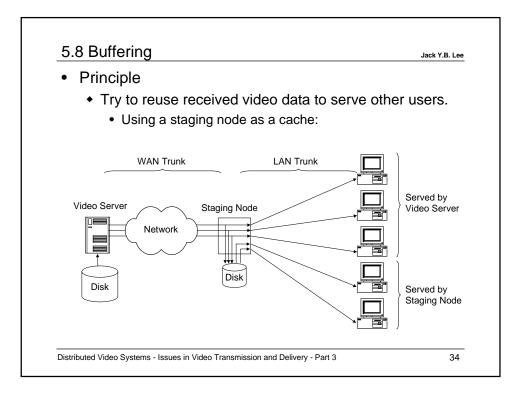
- periodically and decreased by stuffing frames or adding interpolated frames.
- The adjustment can be made online in real-time; or offline by storing multiple versions of the video.

Distributed Video Systems - Issues in Video Transmission and Delivery - Part 3

29




5.7 Piggybacking


- Merging Policies
 - Simple Merging Policy
 - Attempts to form merging groups so that more than two sessions can be merged into a single session.
 - Greedy Merging Policy
 - Attempts to perform merging not only at startup, but continue to merge on-going sessions and groups to form larger groups.
 - Limited Merging Policy
 - Taking into storage overhead and attempts merging only for up to a certain distance (rather than the entire length of video).

Distributed Video Systems - Issues in Video Transmission and Delivery - Part 3

31

References

Jack Y.B. Lee

Part of this chapter's materials are based on:

 A. Dan, D. Sitaram, and P. Shahabuddin, "Scheduling Policies for an On-Demand Video Server with Batching," Proc. 2nd ACM International Conference on Multimedia '94, 1994, pp.15-23.

[2] H. Shachnai, and P.S. Yu, "Exploring Wait Tolerance in Effective Batching for Video-on-Demand Scheduling," Proc. 8th Israeli Conference on Computer Systems and Software Engineering, 1997, pp.67-76.

[3] L. Golubchik, J.S.D. Lui, and R. Muntz, "Reducing I/O Demand in Video-on-Demand Storage Servers," ACM Performance Evaluation Review, vol.23(1), May 1995, pp.25-36.

Other useful references:

[4] H.K. Park, and H.B. Ryou, "Multicast Delivery for Interactive Video-on-Demand Service," Proc. 12th International Conference on Information Networking, 1998, pp.46-50.

[5] M.Y.Y.Leung, J.C.S.Lui, and L.Golubchik, "Buffer and I/O Resource Pre-allocation for Implementing Batching and Buffering Techniques for Video-on-Demand Systems," Proc. 13th International Conference on Data Engineering, 1997, pp.344-353.

[6] E.L.Abram-Profeta, and K.G.Shin, "Providing Unrestricted VCR Functions in Multicast Video-on-Demand Servers," Proc. IEEE International Conference on Multimedia Computing and Systems, 1998, pp.66-75.

[7] S.W.Carter and D.D.E.Long, "Improving Video-on-Demand Server Efficiency Through Stream Tapping," Proc. 6th International Conference on Computer Communications and Networks, 1997, pp.200-207.

[8] W. Liao, and V.O.K. Li, "The Split and Merge Protocol for Interactive Video-on-Demand," IEEE Multimedia, vol.4(4), October 1997, pp.51-62.

Distributed Video Systems - Issues in Video Transmission and Delivery - Part 3

35