Distributed Video Systems Chapter 5 Issues in Video Storage and Retrieval Part I - The Single-Disk Case

Jack Yiu-bun Lee Department of Information Engineering The Chinese University of Hong Kong

 5.1 Introduction 	
 5.2 Simple Capacity Planning 	
 5.3 Other Disk Models 	
 5.4 Performance Optimization 	
 5.5 Internal Striping 	
 5.6 Grouped Sweeping Scheme 	
 5.7 Disk Zoning 	
 5.8 Thermal Calibration 	
 5.9 Interactive Viewing Controls 	
• 5.10 Movie Assignment in Multi-disk Systems	

5.2 Simple Capacity Planning

- Disk-Arm Scheduling
 - SCAN
 - What is the worst-case?
 - Theorem 5.1
 - Given k waiting requests, the worst-case service time with the SCAN algorithm occurs when the k requests are separated by (N_{track}-1)/k tracks (i.e. evenly separated).
 - Provable by induction.
 - Maximum length of a service round:

$$T_{scan}(k) = kT_{read}\left(\frac{N_{track}-1}{k}\right) + \left(\alpha + \beta\sqrt{N_{track}-1}\right)$$

This can be eliminated!

Distributed Video Systems - Issues in Video Storage and Retrieval - Part 1

9

Jack Y.B. Lee

	Jack Y.B. Lee
Rotational Latency	
Problem	
 The worst-case latency depends on rotational 	speed.
 The fastest hard drive today spins at 10,000 r which translates into a latency of 6ms. 	ρm,
 Future hard drives are unlikely to be orders of faster in spinning. 	magnitude
 Actually there is a way to reduce the rotation 	al latency.
 Read the entire track! 	
 Maximum latency is then only one sector. 	
 There are catches: 	
 A track usually is quite large (>1MB), hence b requirement and latency becomes large. 	uffer
 Tracks could be of different sizes (Section 5.6 	j).

5.5 Internal Striping

- Comparison with increasing k in CSCAN
 - Lower buffer requirement
- Shortcomings
 - Long startup delay
 - All video streams must be synchronized
 - Very large round size
 - Marginal performance gain
 - Depends on seek function
 - Not much gain beyond the non-linear region of the seektime curve
 - Disk zoning
 - Tracks in real disks could be of different sizes

Distributed Video Systems - Issues in Video Storage and Retrieval - Part 1

25

Jack Y.B. Lee

Motivation	
 More requests per SCAN, better throughpu but longer worst-case delay and buffer requ 	ut, uirement.
 GSS is proposed to stripe balance between conflicting objectives. 	n these
Principle	
 Divide n video streams into g groups 	
 Streams within a group are served using S 	CAN
 Groups are served in a fixed order 	
Special Cases	
 If g=n then GSS reduces to FIFO 	
 If g=1 then GSS reduces to SCAN 	

5.7 Disk Zoning

• Method 1:

- Scheduling policy
 - Given there are *n* zones, a total of *n* data blocks will be retrieved for each video stream in a service round.
 - If there are *m* concurrent streams, a total amount of 2*nmQ* bytes buffer is required.
 - Disk efficiency will probably be high due to the large round size.
- Drawbacks
 - Both buffer requirement and startup delay will be significantly larger than the case w/o zoning.
 - Storage space will be wasted for all except the innermost track.

Distributed Video Systems - Issues in Video Storage and Retrieval - Part 1

35

Jack Y.B. Lee

	Jack Y.B. Lee
Method 2:	
 Scheduling policy 	
 Given there are n zones, a total of n data b retrieved for each video stream in a service 	olocks will be e round.
• If there are <i>m</i> concurrent streams, and the zone <i>i</i> is u_i , then a total amount of $2m\sum u_i$ bytes but	block size for ffer is required.
 Storage wastage is smaller than Method be blocks are used in outer zones. 	ecause large
 Drawbacks 	
 Buffer management becomes more compli 	cated.
 Pipelining can again be used to reduce but 	ıffer
requirement and startup delay.	

	Jack T.B. Lee
What?	
 In certain hard drives (especially old models), the arm positioning must be calibrated periodically to for thermal expansion of the hardware. 	e disk o cater
• So?	
 The drive stops reading/writing while performing thermal calibration, which can take seconds. 	а
 This disrupts retrieval schedules in continuous-m applications. 	edia
Solution?	
 While there are ways to take thermal calibration i account, no generally satisfactory way is availabl 	nto e.
 In practice, only drives that do not require therma calibration should be used in video applications. 	al
istributed Video Systems - Issues in Video Storage and Retrieval - Part 1	39

	Jack Y.B. Lee
• C. Ruemmler, and J. Wilkes, "An Introduction to Disk Drive Mode <i>IEEE Computer</i> , vol.27, pp.17-28, March 1994.	elling,"
 P.S. Yu, M.S. Chen, and D.D. Kandlur, "Grouped Sweeping Sched DASD-based Multimedia Storage Management," ACM Multimedia Systems, vol.1, pp.99-109, 1993. 	uling for
• D.J. Gemmell, H.M. Vin, D.D. Kandlur, P.V. Rangan, and L.A. Ro "Multimedia Storage Servers: A Tutorial," <i>IEEE Computer</i> , vol.28(5), pp.40-9, May 1995.	owe,
• T.D.C. Little, and D. Venkatesh, "Popularity-Based Assignment of Storage Devices in a Video-on-Demand System," <i>ACM Multimedia Systems</i> , vol.2(6), pp.280-287, 1995.	Movies to
• S.D. Stoller, and J.D. DeTreville, "Storage Replication and Layout Video-on-Demand Servers," <i>Proc. NOSSDAV'95</i> , 1995.	in
• A.N. Mourad, "Issues In the Design of a Storage Server for Video-on-Demand," ACM Multimedia Systems, vol(4), pp.70-86, 1	996.
stributed Video Systems - Issues in Video Storage and Retrieval - Part 1	45