Distributed Video Systems Chapter 4 Network Technologies

Jack Yiu-bun Lee Department of Information Engineering The Chinese University of Hong Kong

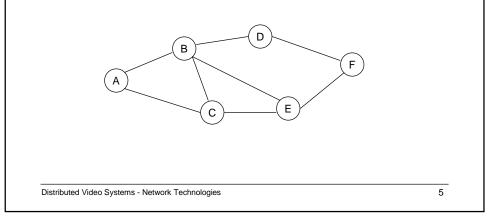
4.1 Introduction	
 4.2 Multiple Access Protocols 	
 4.3 Network Software 	
 4.4 Reference Models 	
 4.5 Network Hardware 	
 4.6 High-Speed Technologies 	
 4.7 Video Delivery - LAN 	
 4.8 Video Delivery - WAN 	
 4.9 Video Delivery - Internet 	

4.1 Introduction

- Basic Concepts
 - Classification by Transmission Technology:
 - Broadcast networks
 - Point-to-point networks
 - Broadcast Networks
 - A single communication channel is shared by all hosts.
 - A host sends packets on the channel, which are then received by all hosts. An *address field* within a packet is used to identify the intended receiver.
 - Special addresses: Broadcast address & multicast address

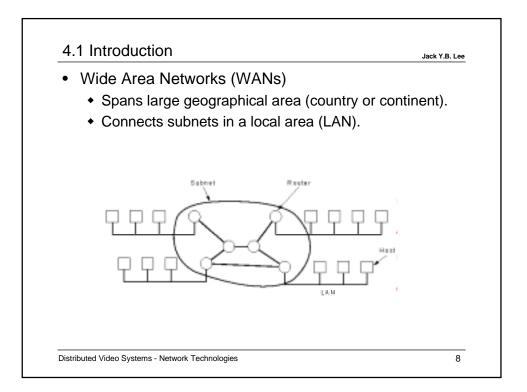
Distributed Video Systems - Network Technologies

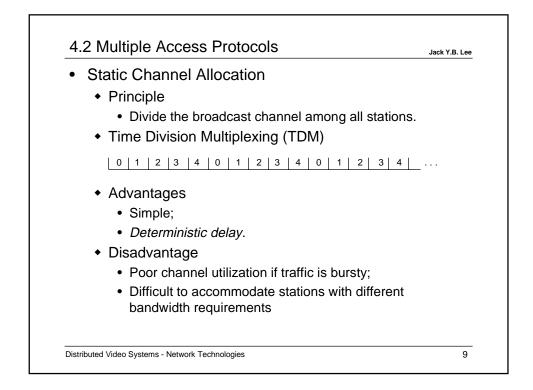
4.1 Introduction Jack Y.B. Lee Basic Concepts Broadcast Networks • Two or more hosts attempting to transmit will result in a collision. • A Medium Access Sublayer is needed to arbitrate accesses from multiple network devices to a shared broadcast network. Network Device Network Device Network Device А в С Broadcast Network 4 Distributed Video Systems - Network Technologies


3

Jack Y.B. Lee

4.1 Introduction


- Basic Concepts
 - Point-to-Point Networks
 - Each communication channel links up two hosts.
 - To go from one host to another, intermediate hosts may need to be traversed (routing).

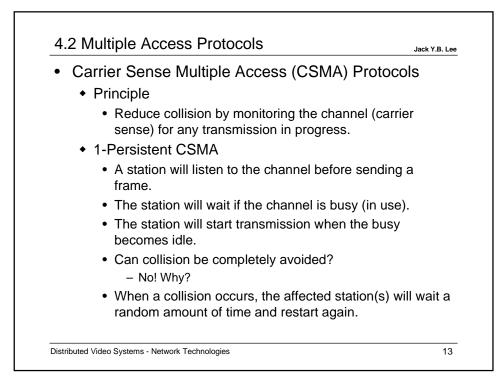

Jack Y.B. Lee

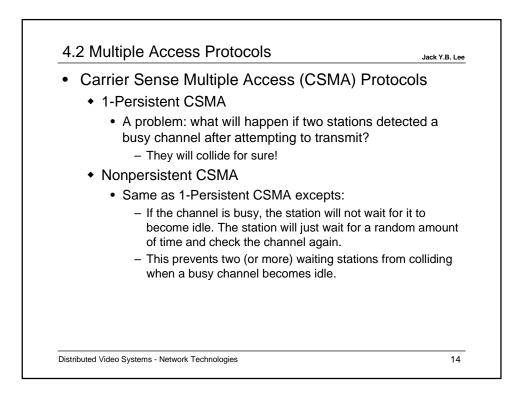
Basic Conc	•	Distance
Interprocess distance		Example
0.1 m	Circuit board	Data flow machine
1 m	System	Multicomputer
10 m	Room]]
100 m	Building	Local area network
1 km	Campus]]
10 km	City	Metropolitan area network
100 km	Country	11
1,000 km	Continent	Wide area network
10,000 km	Planet	The internet

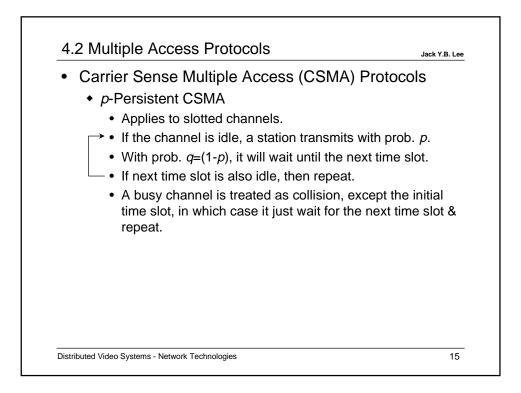
 Restricted in size (up to one km) Mostly are broadcast networks Speeds range from 10Mbps to 100Mbps Low error rate Low latency c:\>ping 137.189.97.120 pinging 137.189.97.120: bytes=32 time<10ms TTL=128 Reply from 137.189.97.120: bytes=32 time<10ms TTL=128		al Area Networks (LANs)	
 Speeds range from 10Mbps to 100Mbps Low error rate Low latency c:\>ping 137.189.97.120 Pinging 137.189.97.120 with 32 bytes of data: Reply from 137.189.97.120: bytes=32 time<10ms TTL=128 Reply from 137.189.97.120: bytes=32 time<10ms TTL=128 Reply from 137.189.97.120: bytes=32 time<10ms TTL=128 	+ F	Restricted in size (up to one km)	
 Low error rate Low latency c:\>ping 137.189.97.120 Pinging 137.189.97.120 with 32 bytes of data: Reply from 137.189.97.120: bytes=32 time<10ms TTL=128 Reply from 137.189.97.120: bytes=32 time<10ms TTL=128 Reply from 137.189.97.120: bytes=32 time<10ms TTL=128 	◆ N	lostly are broadcast networks	
<pre> • Low latency c:\>ping 137.189.97.120 Pinging 137.189.97.120 with 32 bytes of data: Reply from 137.189.97.120: bytes=32 time<10ms TTL=128 Reply from 137.189.97.120: bytes=32 time<10ms TTL=128 Reply from 137.189.97.120: bytes=32 time<10ms TTL=128</pre>	• 5	peeds range from 10Mbps to 100Mbps	
<pre>c:\>ping 137.189.97.120 Pinging 137.189.97.120 with 32 bytes of data: Reply from 137.189.97.120: bytes=32 time<10ms TTL=128 Reply from 137.189.97.120: bytes=32 time<10ms TTL=128 Reply from 137.189.97.120: bytes=32 time<10ms TTL=128</pre>	+ L	ow error rate	
Pinging 137.189.97.120 with 32 bytes of data: Reply from 137.189.97.120: bytes=32 time< 10ms TTL=128 Reply from 137.189.97.120: bytes=32 time< 10ms TTL=128 Reply from 137.189.97.120: bytes=32 time< 10ms TTL=128	◆ L	ow latency	
Pinging 137.189.97.120 with 32 bytes of data: Reply from 137.189.97.120: bytes=32 time< 10ms TTL=128 Reply from 137.189.97.120: bytes=32 time< 10ms TTL=128 Reply from 137.189.97.120: bytes=32 time< 10ms TTL=128	г		
Reply from 137.189.97.120: bytes=32 time< 10ms TTL=128 Reply from 137.189.97.120: bytes=32 time< 10ms TTL=128 Reply from 137.189.97.120: bytes=32 time< 10ms TTL=128		c:\>ping 137.189.97.120	
Reply from 137.189.97.120: bytes=32 time< 10ms TTL=128 Reply from 137.189.97.120: bytes=32 time< 10ms TTL=128		Pinging 137.189.97.120 with 32 bytes of data:	
Reply from 137.189.97.120: bytes=32 time<10ms TTL=128			
Reply from 137.189.97.120: bytes=32 time<10ms TTL=128			
	L	Reply from 137.189.97.120: bytes=32 time<10ms TTL=128	

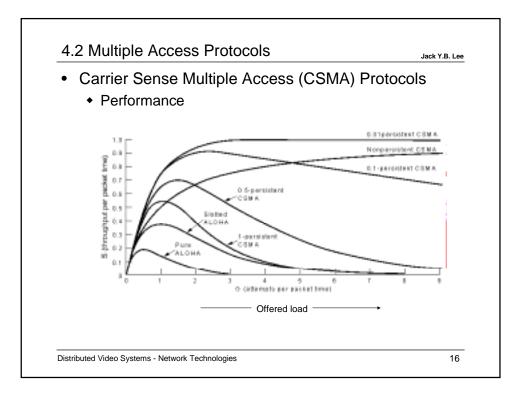
4.2 Multiple Access Protocols	Jack Y.B. Lee
 Dynamic Channel Allocation 	
Principle	
 Channel assignments are dynamically det 	ermined.
 A collision will occur if more than one devi channel at the same time. 	ce access the
 A multiple access protocol is used to arbiti access and to recover from collision. 	rate channel
 Advantage 	
 Better channel utilization through statistical of bursty traffics. 	al multiplexing
 Disadvantages 	
 Higher complexity; 	
 Delay may become non-deterministic if co occur. 	Ilisions can

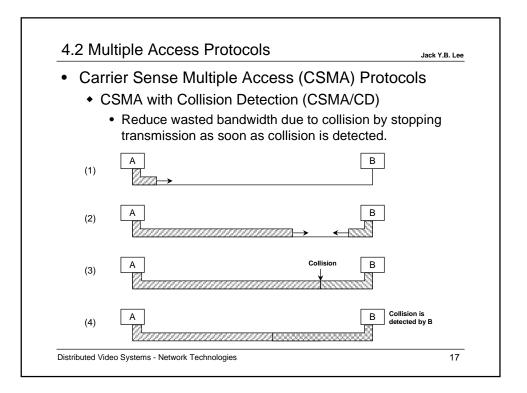
4.2 Multiple Access Protocols

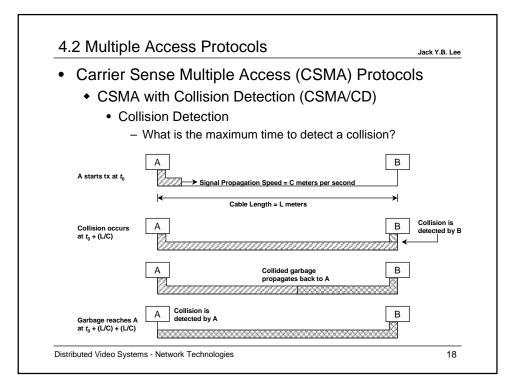

Jack Y.B. Lee

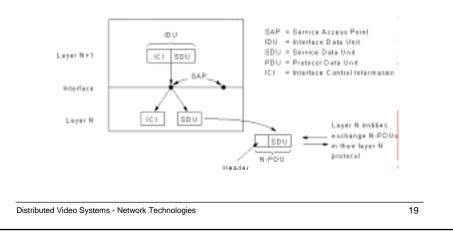

- ALOHA
 - Invented in 1970s by Norman Abramson & his colleagues.
 - Two variants
 - The original ALOHA, called Pure ALOHA and;
 - Slotted ALOHA
 - Pure ALOHA
 - Each station transmits freely w/o any restriction.
 - Collisions can occur and is detected by the senders.
 - If collision occurs, a sender will wait for a random amount of time and then sends again.
 - Why wait random amount of time?
 - Otherwise the collision will repeat forever if two or more stations starts their transmission at the same time instance.

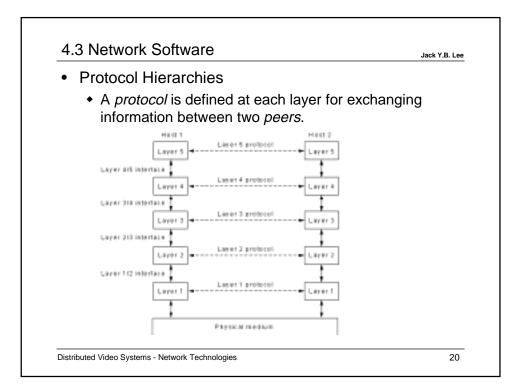

Distributed Video Systems - Network Technologies

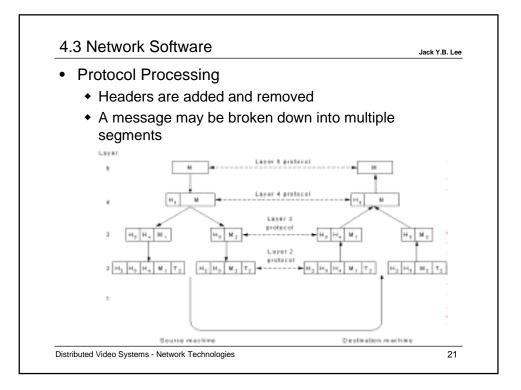

4.2 Multiple Access Protocols Jack Y.B. Lee ALOHA Slotted ALOHA • Time is divided into discrete intervals (slots), each corresponding to one frame. • A station can only transmit at beginning of a time slot. Performance time) (throughput per frame t 0.40 Slotted ALOHA: 5 = Ge-0 (why better?) 0.30 0.20 Pure ALO HA: S = Gel 0.10 ŝ 1.5 2.0 3.0 0.5 1.0 G (attempts per packet time) 12 Distributed Video Systems - Network Technologies


11

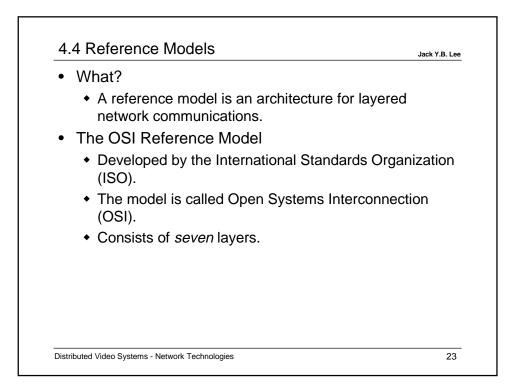


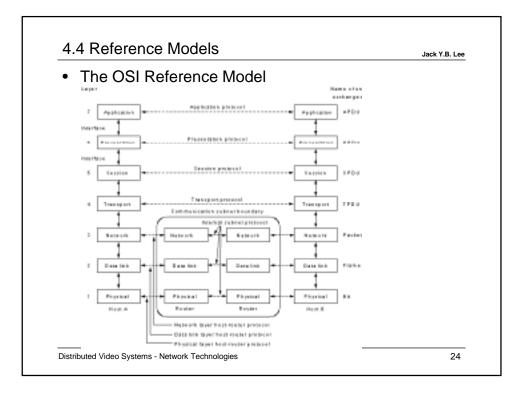



4.3 Network Software


- Protocol Hierarchies
 - Network systems are broken down into multiple layers.

Jack Y.B. Lee


• Each layer offers a well-defined interface to provide *services* to the upper layers.



4.3 Network Software	Jack Y.B. Le
Protocol Software	
 A protocol layer provides services to upper 	layers.
 Types of Services 	
 Connection-Oriented versus Connectionless 	Services
– Connection setup required?	
 Analogy: Telephone versus Postal Mail 	
 Reliable versus Unreliable Services 	
– Automatic recover from errors?	
 Stream versus Message Services 	
– Preserve message boundary?	
 Quality-of-service (QoS) guarantees 	
 Delay and delay jitters 	
 Maximum loss rate 	
 Average and peak bandwidth, etc. 	

4.4 Reference Models

- The OSI Reference Model
 - Physical Layer
 - Concerns transmitting *raw bits* (0 and 1) over a *physical communication channel* (copper wire, fibre optic cable, wireless media).

Jack Y.B. Lee

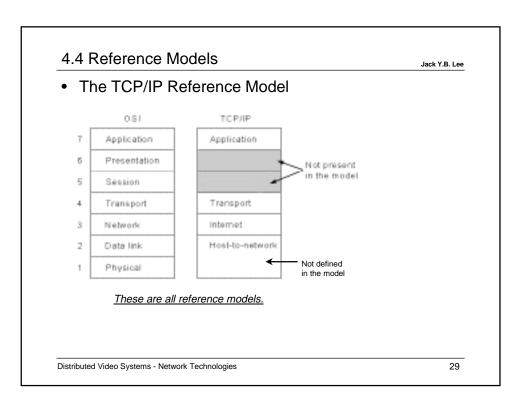
25

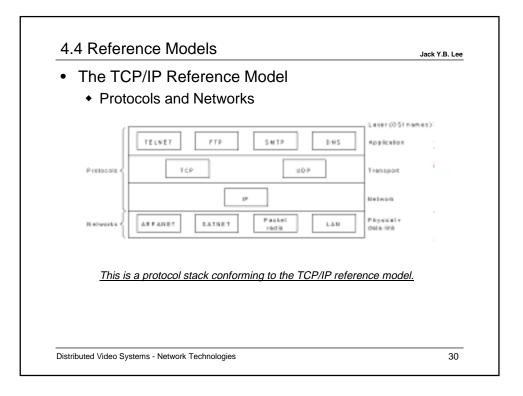
- Data Link Layer
 - Provides a service which is free of *undetected* transmission errors.
 - Optionally provides error control and flow control.
 - Coordinating transmissions and receptions on the same link.
 - Resolve contentions in broadcast networks.

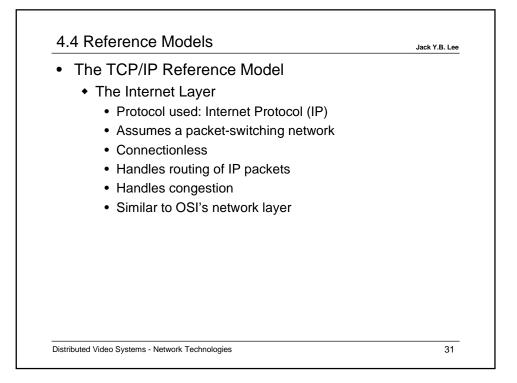
Distributed Video Systems - Network Technologies

4.4 Reference Models Jack Y.B. Lee The OSI Reference Model The Network Layer · Concerned with controlling the operation of the subnet. • Handles routing of a packet from source to destination. · Handles congestions. • Keeps accounting information if needed. · Converts between incompatible addressing schemes and packet formats. The Transport Layer • Provides an error-free connection on an end-to-end basis. (Unreliable messages service is also possible.) · Handles upward and downward multiplexing. • Handles name resolution across the entire network. · Handles flow control between sender and receiver. Distributed Video Systems - Network Technologies 26

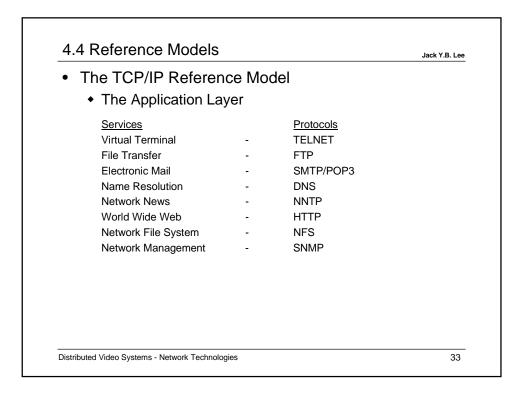
4.4 Reference Models

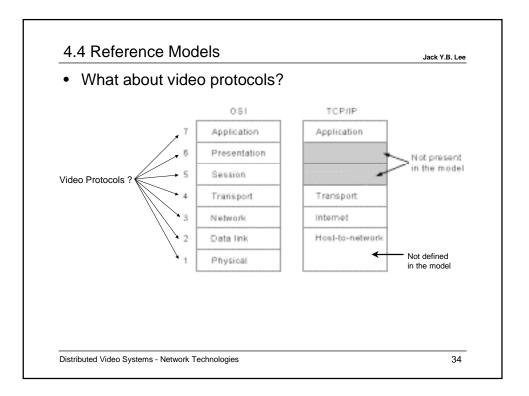

- The OSI Reference Model
 - The Session Layer
 - · Provides session management
 - dialogue control
 - token management
 - synchronization or crash recovery
 - The Presentation Layer
 - Concerns the syntax and semantics of the information transmitted
 - Performs information encoding and decoding to facilitate the exchange of information
 - Text: ASCII versus Unicode
 - Numbers: byte ordering and byte size differences

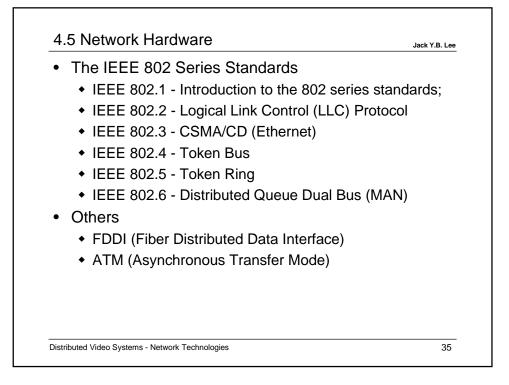

Distributed Video Systems - Network Technologies

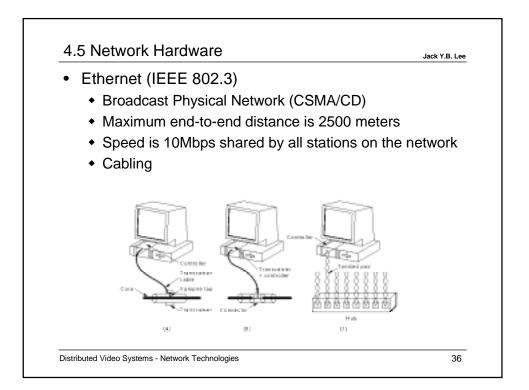

4.4 Reference Models
9. Che OSI Reference Model
9. The Application Layer
9. Defines the protocols and services for a specific application.
9. Examples:
9. File Transfer (FTP)
9. Email (SMTP, POP3)
9. WWW (HTTP)
9. Network News (NNTP)

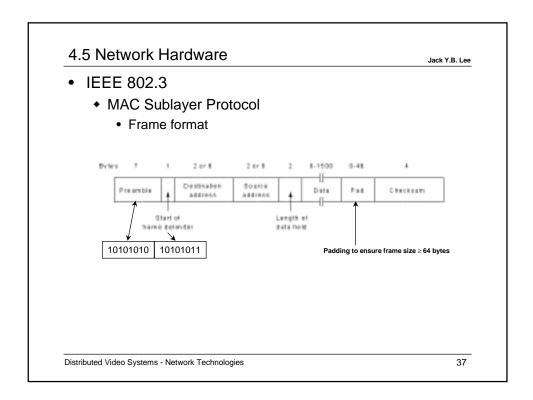
27

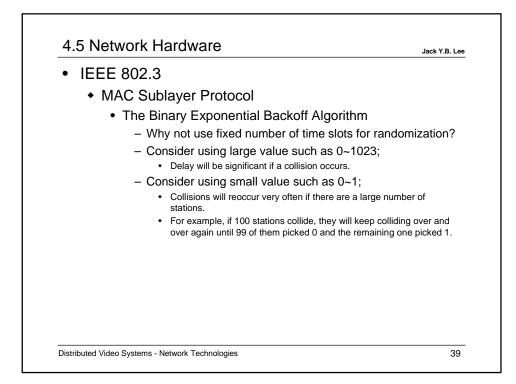

Jack Y.B. Lee

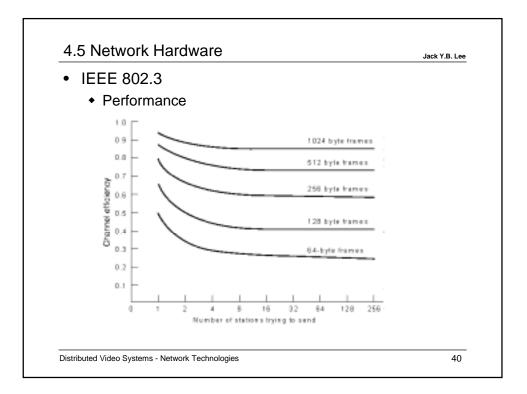


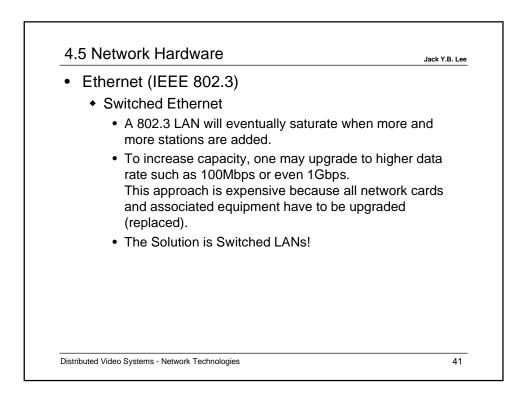


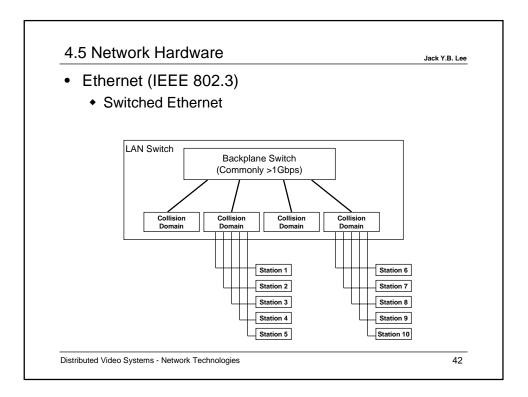



The TCP/IP Reference Model	
 The Transport Layer 	
 Protocol one: Transmission Control Pro 	otocol (TCP)
 Provides a reliable, connection-oriented 	d, stream service.
 Handles data packetization and reasse 	mbly.
 Handles flow control, sequencing, and 	error recovery.
 Handles designation among processes means of service port numbers. 	in the same host by
 Protocol two: User Datagram Protocol ((UDP)
 Provides an unreliable, connectionless, 	, datagram service.
 Handles designation among processes means of service port numbers. 	in the same host by
 No flow control, sequencing, and error 	recovery.





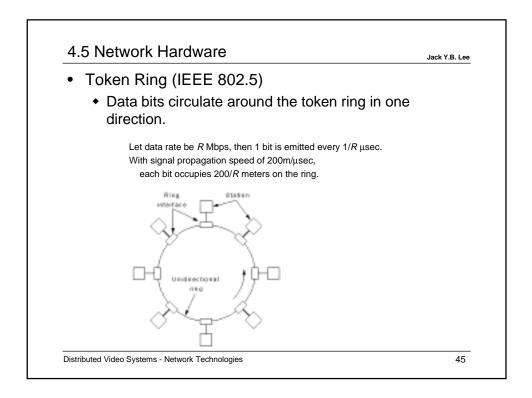


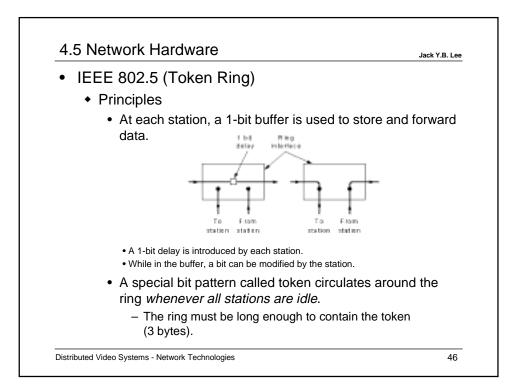


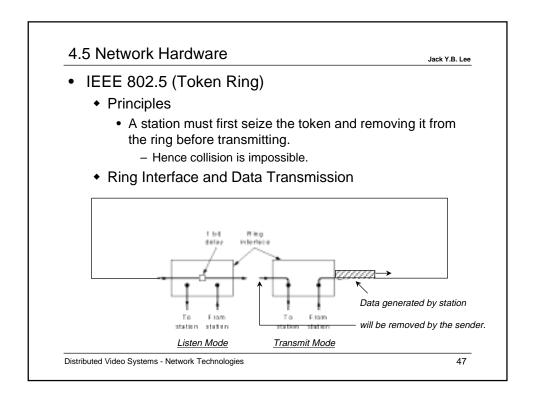
4.5 Network H	lardware	Jack Y.B. Lee
• IEEE 802.3		
 MAC Sub 	blayer Protocol	
 Why set 	et a minimum frame size at 64 bytes	s?
For co	llision detection,	
– Ma	ax time to detect collision is 2 x max. pro	pagation time;
	opagation time for 2500 meters with 4 re .6μsec.	epeaters is
- 10	Mbps x 2 x 25.6µsec = 64 bytes!	
 The Bi 	nary Exponential Backoff Algorithm	
– Sp	ecifies the random waiting time after co	llision.
For	1 st collision, waits either 0 or 1 time slots and retry;	
	llided again at retry, then randomly waits 0~3 time slots and	
	Illided again at 2 nd retry, then randomly waits 0~(2 ³ -1) slots 8	
	r t th collisions, a random number between 0~(2 ⁱ -1) is choose r reaching 10, <i>i</i> will not further increase. After 16 collisions, t	U

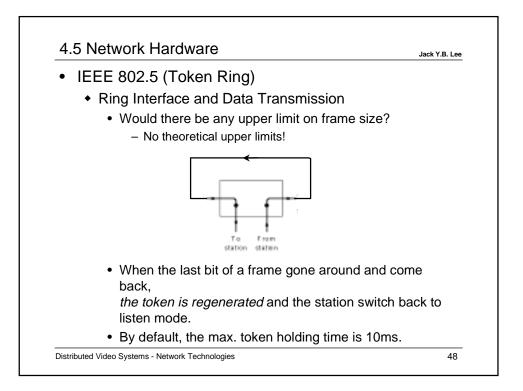
4.5 Network Hardware

- Ethernet (IEEE 802.3)
 - Good
 - Most popular
 - · Shortest delay at low load
 - Simple protocol, passive cable
 - Bad
 - Substantial analog operation (carrier sense, collision detection)

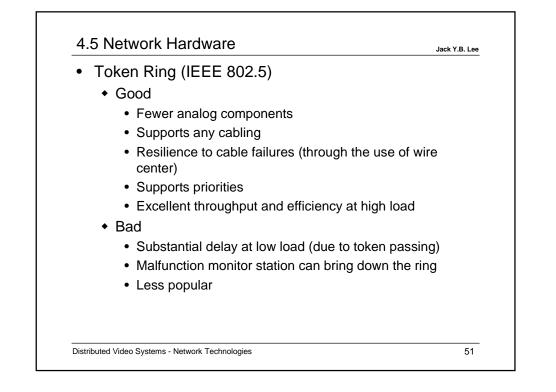

Jack Y.B. Lee

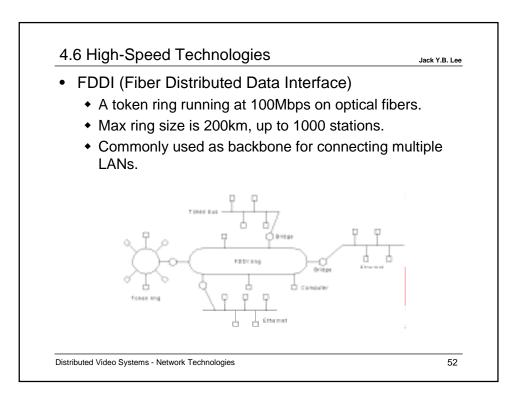

43


- Frame size must be at least 64 bytes
- Non-deterministic delay (due to collision)
- No priorities
- Cable length limited to 2.5km at 10Mbps
- Performance deterioates at high load


Distributed Video Systems - Network Technologies


<text><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>



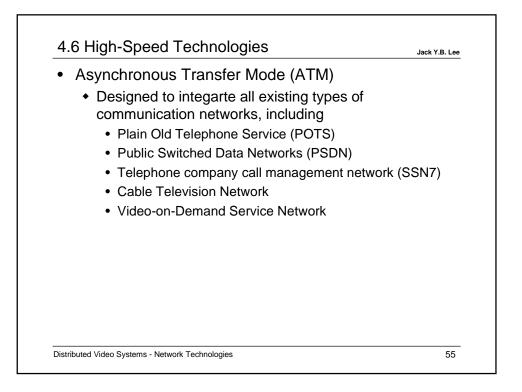


IEEE 802.5 (Token Ring)	
Ring Maintenance	
Monitor Station	
 One of the stations in a token ring act a 	as a monitor station.
 Monitor station is elected (or re-elected by a special protocol. 	d if one goes down)
 Maintenance Functions 	
 Regenerate token if it is lost (e.g. due t 	to station crash);
 Detect ring breaks; 	
 Remove garbled frames; 	
 Remove orphan frames; 	
 Insert artifical delay if the ring is too sh (3 bytes). 	ort to hold the token

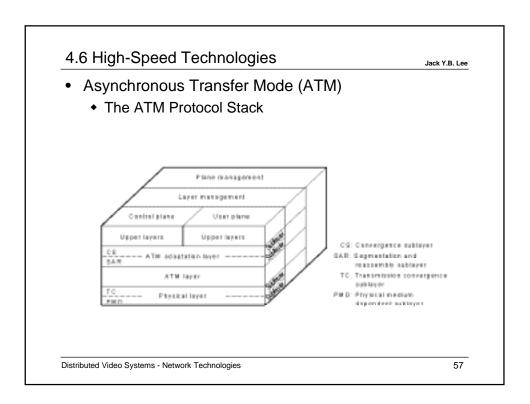
4.6 High-Speed Technologies

Jack Y.B. Lee

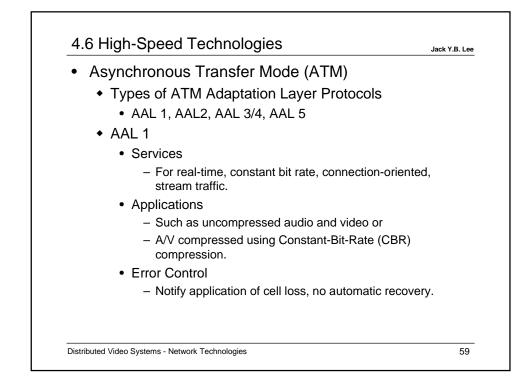
53

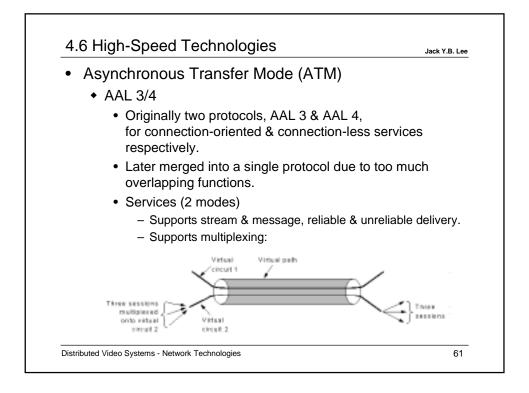

- Fast Ethernet
 - A faster version of 802.3 Ethernet, running at 100Mbps.
 - The max cable length is reduced by a factor of 10.
 - Cabling

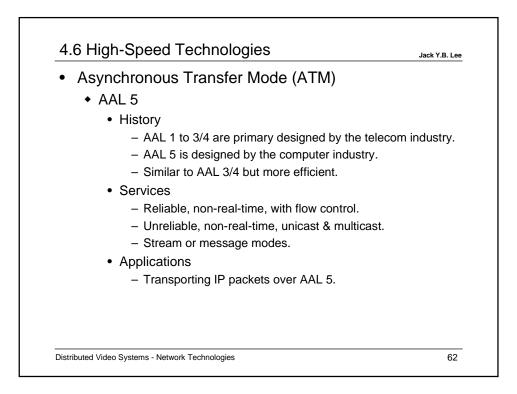
Name	Cable	Mas. segment	Advantages
100Base-T4	Twisted pair	100 m	Uses category 3 UTP
100Base-TX	Twisted pair	100 m	Full duples at 100 M bps
100Base-F	Fiber optics	2000 m	Full duplex at 100 Mbps; long runs


- Full Duplex
 - A station can send and receive *simultaneously*.

Distributed Video Systems - Network Technologies


4.6 High-Speed Technologies Jack Y.B. Lee • Gigabit Ethernet • An even faster version of 802.3 Ethernet, running at 1000Mbps (1Gbps). Cabling: Fiber optic or CAT-5 UTP • The good thing about 802.3 series of Ethernet is that they are compatible with each other. 1010 Misys Backborn Gigshit Ethernet Switch or - 2002.0000000 100/1000 Switch THE OWNER WAT III Max 10.06 10 Bpc 10 Map 11Mg 54 Distributed Video Systems - Network Technologies

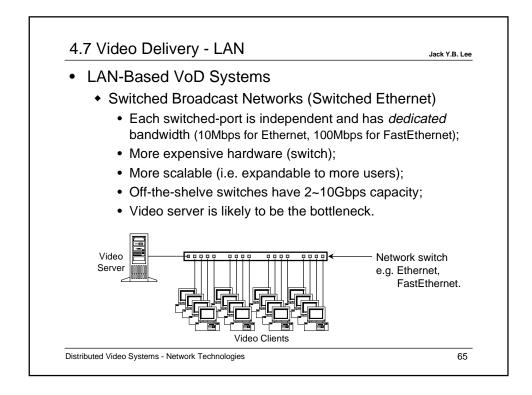

 Basic AT 	ous Transfer Mode (ATM) ſM Technology	
 Packe cells. 	et switching with small packets (53	3 bytes) called
Bytes 5	48	
Head	der User data	
	<u>An ATM cell</u>	
Conne delive	ection-oriented, guarantees in-sec ery.	quence but not
 Speed 	ds range from 25Mbps to 622Mbp	s and further.
• Supp	orts Quality-of-Service (QoS) on a	connection.
	elay, delay jitter, average and peak ba	

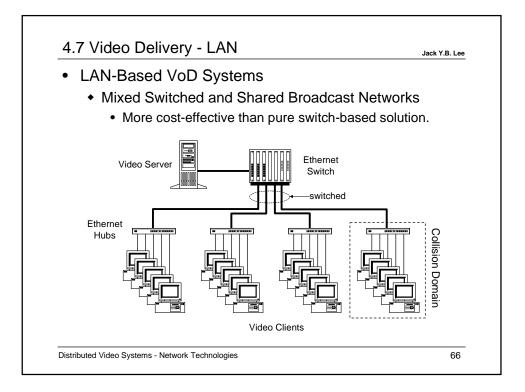


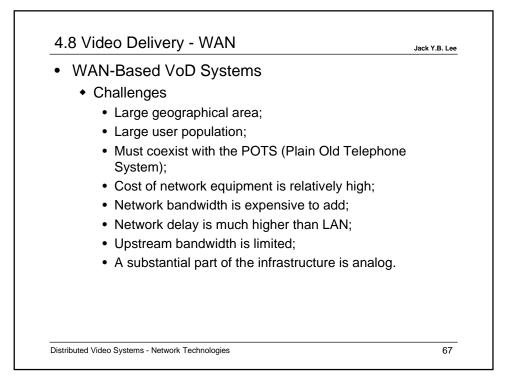
A overabranova Transfor Mada (ATM)	Jack Y.B. Lee
Asynchronous Transfer Mode (ATM)	
 ◆ AAL 2 	
Services	
 For variable-bit-rate, connection-oriented, data 	atagram traffic.
 Applications 	
 A/V compressed using Variable-Bit-Rate (CI compression. 	BR)
Catch!	
 AAL 2 is not usable because the standard de length of header fields. 	oes not specify
 This is intentional(!) because AAL 2 has many which cannot be solved in time for standardi 	• •

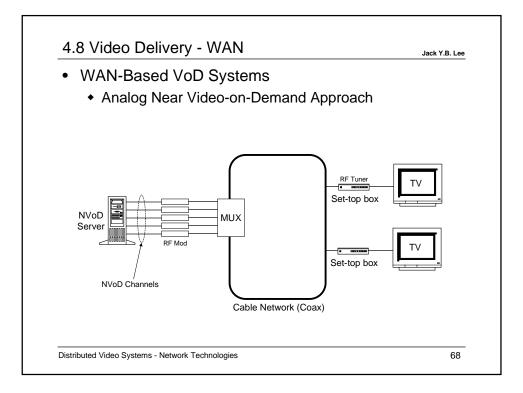
4.7 Video Delivery - LAN

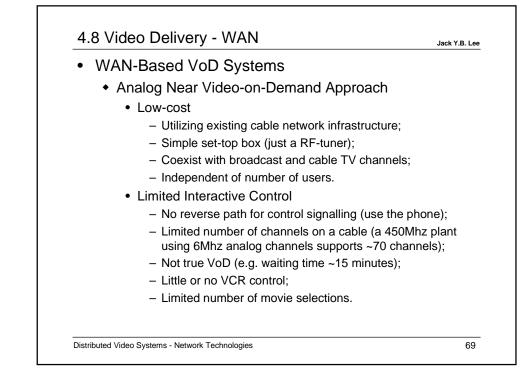
- LAN-Based VoD Systems
 - Characteristics
 - Good Points:
 - Cost of network equipment is relatively low;
 - Most hardware and software are off-the-shelve products;

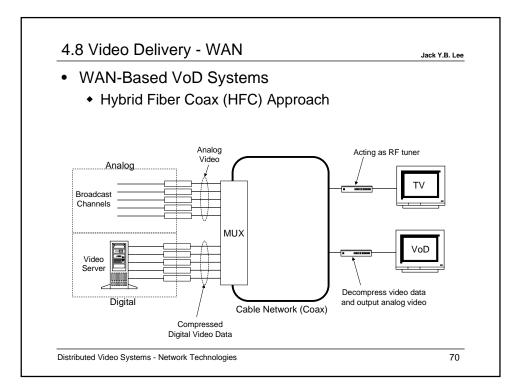

Jack Y.B. Lee

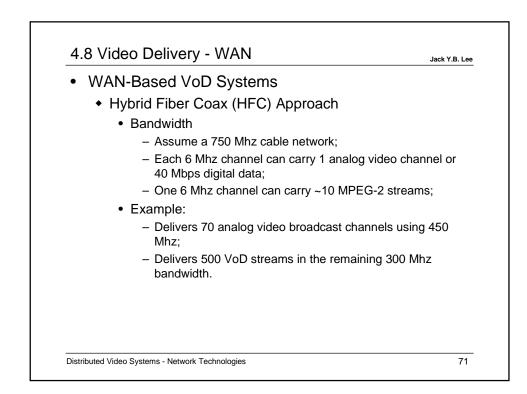

63

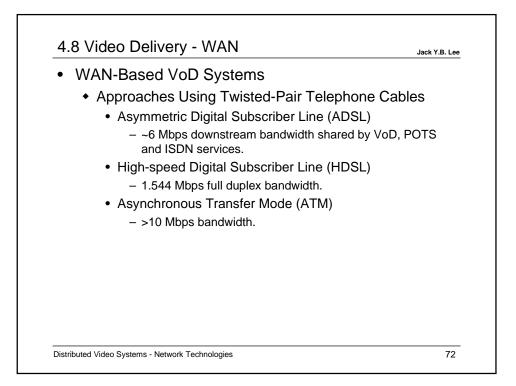

- Mature and open platforms;
- Network bandwidth can easily be added;
- System expansion is easy;
- Can coexist with existing computer applications.
- Limitations:
 - Geographical span is limited to a few kilometers;
 - Limited user population;
 - More computer oriented (more demanding on the user).

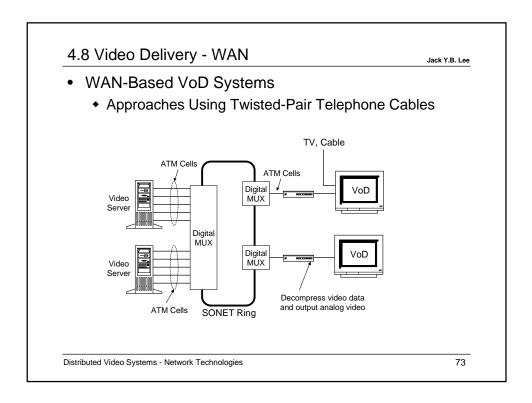

Distributed Video Systems - Network Technologies


4.7 Video Delivery - LAN Jack Y.B. Lee LAN-Based VoD Systems Shared Broadcast Networks (Ethernet) · Very low cost; • Very limited network capacity; Collisions further reduces network throughput; • Network is the bottleneck. Video Ethernet Hub 0000 Server Video Clients A 10Mbps shared Ethernet segment can support 5~7 MPEG-1 video streams. 64 Distributed Video Systems - Network Technologies









 Internet-Based VoD Systems 	
 Challenges 	
 Non-stationary, unpredictable network pe 	rformance;
 High packet loss rate; 	
 Long delay; 	
 Limited MTU size; 	
 Very limited support for multicast. 	
 Current Status 	
 Delivering high-quality video over the Inte feasible today; 	ernet is not
 Delivering low-frame-rate, low-quality vide 	eo is possible;
 The network is the limitation, not the proto 	ocols.

4.9 Video Delivery - Internet

Jack Y.B. Lee

• Approaches

- Video over standard HTTP (i.e. TCP)
 - Allows streaming directly from web server;
 - Limited VCR control;
 - Poor performance due to TCP;
 - As interim solution only.
- Video over UDP or IP
 - Requires dedicated video server;
 - Full VCR control can be supported;
 - Better performance due to application-specific flow control and error control;
 - The preferred solution in serious applications.

Distributed Video Systems - Network Technologies

75