Distributed Video Systems
Chapter 3
Storage Technologies

Jack Yiu-bun Lee
Department of Information Engineering
The Chinese University of Hong Kong

Contents

• 3.1 Introduction
• 3.2 Magnetic Disks
• 3.3 Video Retrieval
• 3.4 Disk Scheduling
• 3.5 Admission Control
• 3.6 I/O Bandwidth
• 3.7 Storage Capacity
3.1 Introduction

• System Model

- Challenges
 - Real-time storage and retrieval:
 - Continuous media data must be presented using the same timing sequence with which they were captured.
 - Any deviation from this timing sequence can lead to artifacts such as jerkiness in video motion, pops in audio, or possibly complete unintelligibility.
 - Media components may also need synchronization. For example, a video stream must synchronize an audio stream in a movie.
 - High data transfer rate and large storage space:
 - Digital video and audio playback demands a high data transfer rate, so that storage space is rapidly filled. (E.g. MPEG1 ~ 1.5Mbps, MPEG2 ~ 4Mbps)
 - The server must efficiently store, retrieve, and manipulate data in large quantities at high speeds.
3.2 Magnetic Disks

- **Disk Model**
 - **Fixed Delays**
 - Processing delay at disk controller;
 - Delay at data bus (e.g. SCSI) between disk and controller;
 - Head-switching time;
 - **Variable Delays**
 - Rotational Latency
 - Depends on position and spindle speed
 - Seek time
 - Depends on number of tracks to seek
 - Transfer Time
 - Depends on how much data to transfer to host

- The disk platters spin at speed from 3600rpm to 10000rpm;
- Disk heads in all platters move together.
- A disk track is further divided into disk sectors.
3.2 Magnetic Disks

- **Disk Model**
 - Disk-Seek Time Function:
 \[T_{seek}(n) = \alpha + \beta \sqrt{n} \]
 - Number of tracks to seek
 - Seek-time constant (sec)
 - Fixed overhead (sec)

 - Total Disk-Read Time Function:
 \[T_{read}(n) = \alpha + \beta \sqrt{n} + T_{latency} + \frac{Q}{R_{disk}} \]
 - Size of data to read (Bytes)
 - Disk transfer rate (Bytes/sec)
 - Rotational latency (sec)

- **Typical Disk Parameters**
 - Seagate 4GB ST12400N (SCSI-2)

<table>
<thead>
<tr>
<th>Disk Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle speed</td>
<td>5411 rpm</td>
</tr>
<tr>
<td>Max latency (r)</td>
<td>11ms</td>
</tr>
<tr>
<td>Number of tracks</td>
<td>2621</td>
</tr>
<tr>
<td>Raw transfer rate</td>
<td>3.35MB/s</td>
</tr>
<tr>
<td>Single-track seek</td>
<td>1ms</td>
</tr>
<tr>
<td>Max full-stroke seek</td>
<td>19ms</td>
</tr>
</tbody>
</table>
3.2 Magnetic Disks

- Typical Disk Parameters
 - SCSI Variants

<table>
<thead>
<tr>
<th>Types</th>
<th>Variants</th>
<th>Max. Speed</th>
<th>Number of Devices</th>
<th>Max. Cable Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSI-1</td>
<td>Fast SCSI</td>
<td>5 MB/s</td>
<td>8</td>
<td>6m</td>
</tr>
<tr>
<td>SCSI-2</td>
<td>Fast Wide SCSI</td>
<td>10 MB/s</td>
<td>8</td>
<td>1.5m~3m</td>
</tr>
<tr>
<td></td>
<td>Ultra SCSI</td>
<td>20 MB/s</td>
<td>8</td>
<td>1.5m</td>
</tr>
<tr>
<td></td>
<td>Wide Ultra SCSI</td>
<td>40 MB/s</td>
<td>16</td>
<td>1.5m</td>
</tr>
<tr>
<td></td>
<td>Ultra2 SCSI</td>
<td>40 MB/s</td>
<td>8</td>
<td>12m</td>
</tr>
<tr>
<td></td>
<td>Wide Ultra2 SCSI</td>
<td>80 MB/s</td>
<td>16</td>
<td>12m</td>
</tr>
<tr>
<td></td>
<td>Ultra3 SCSI</td>
<td>80 MB/s</td>
<td>8</td>
<td>12m</td>
</tr>
<tr>
<td></td>
<td>Wide Ultra3 SCSI</td>
<td>160 MB/s</td>
<td>16</td>
<td>12m</td>
</tr>
<tr>
<td>Fibre Channel</td>
<td>FC-AL</td>
<td>100~200 MB/s</td>
<td>126</td>
<td>30m~10km</td>
</tr>
</tbody>
</table>

- Note that the "Max. Speed" is the top speed of the interface.
- The actual achievable speed depends on the performance of the connected disks.

3.3 Video Retrieval

- The Bandwidth Landscape:

Even ATM's 155Mbps bandwidth is not sufficient.
A harddisk's throughput can easily be exceeded.
3.3 Video Retrieval

- Single-Stream Retrieval

 • Ideal Disk (Constant Service Time)

 Assumes zero transmission time in network.

- In Practice (Variable Service Time)

 • Variable delay can cause playback glitches:
3.3 Video Retrieval

- Single-Stream Retrieval
 - In Practice (Variable Service Time)
 - Buffering At Server:

![Diagram of single-stream retrieval]

- Buffering At Receiver:

![Diagram of single-stream retrieval]

- Multi-Stream Retrieval
 - One Disk Per Stream
 - Simple but wasteful because disk bandwidth is usually much larger than video bit-rate.
 - E.g. >10Mbps for HD, but MPEG2 only ~4Mbps.
 - Multiple Streams Per Disk
 - A disk scheduling algorithm is required to ensure that the individual streams will not interfere with each other, and the delay constraint is met.
 - There are many disk scheduling algorithms, each with its own strengths and weaknesses.
3.4 Disk Scheduling

- **Conventional Disk Scheduling Algorithms**
 - First-Come-First-Serve (FCFS)
 - Service requests in the order they arrive.
 - Simple but poor disk utilization.
 - Example:

```
requests ➔ 1 2 3 4 5 ➔ Retrieved Data
```

```
2 3 1
```

Very long seek time in this example.

- **SCAN**
 - Service requests along *scanning* direction.
 - Better disk utilization but potentially long *round time*.
 - Example:

```
requests ➔ 1 2 3 4 5 ➔ Retrieved Data
```

```
2 3 1
```

```
scanning direction
```

```
Service Order: 2 5 4 3 1
```

Note request 1 has to wait longer even it arrives first!
3.4 Disk Scheduling

- Multimedia Disk Scheduling Algorithms
 - Earliest Deadline First (EDF)
 - This algorithm schedules the media block with the earliest deadline for retrieval.
 - Likely to yield excessive seek time and rotational latency, and poor server-resource utilization can be expected.
 - Scan-EDF
 - Same as EDF except using SCAN to schedule requests having the same deadline.

- Disk Scheduling Algorithms for VoD Servers
 - Characteristic of Continuous Media
 - Periodic retrieval of fixed-size data blocks;
 - The entire retrieval schedule is known beforehand.
 - Round-Based Disk Scheduling
 - Read one data block for each video stream in each round.
 - Retrievals in a round are serviced using SCAN.
3.4 Disk Scheduling

- Disk Scheduling Algorithms for VoD Servers
 - Round-Based Disk Scheduling
 - To ensure the continuity of data flow for transmission, we need **two buffers per video stream**.
 - Limitations
 - All video streams must have the same data rate; or
 - The data rate must be an integer multiple of a base data rate.

3.5 Admission Control

- Admission Control
 - Motivation
 - A VoD system only have finite capacity. Hence a mechanism must be used to admit and reject users to avoid system overload.
 - Types of Admission Control Algorithms
 - Deterministic
 - Worst-case scenarios are used to guarantee the service of existing users.
 - Statistical
 - Statistical behaviors of the system are used to provide **probabilistic** guarantee. E.g. meeting deadline 99% of the time.
 - Observational
 - Current system status like utilizations are used to evaluate the admission of new users.
3.5 Admission Control

- Dealing with Missed Deadlines
 - Why?
 - Deadlines could be missed if the admission control algorithm is statistical or some other unexpected events occur.
 - What to do?
 - Ignore It
 - Causes service degradations such as jerky video, decoding error, scrambled video, audio clicks, etc.
 - Depends on how much and what kind of data is missed.
 - Error Concealment
 - Repeating data (previous frame, audio packet, etc.)
 - Skipping video frame
 - Lower the resolution (temporary)

3.6 I/O Bandwidth

- Increasing Disk Throughput
 - Background
 - A single disk's throughput can serve a very limited number of concurrent users.
 - For example, a SCSI hard disk can serve around 10 MPEG1 video streams and 3-4 MPEG2 video streams.
 - Replication
 - Use multiple disks, each carry a separate copy of a movie.
 - Expensive since movie is large in size.
3.6 I/O Bandwidth

- Increasing Disk Throughput
 - Partition
 - Use multiple disks, each carry different movie titles.
 - Same total storage but poor load-balancing.

- Disk Striping (Disk Array)
 - Divides a video stream into units and distributes over all disks in the array.

Data Organization:

<table>
<thead>
<tr>
<th>Disk</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
</tr>
</thead>
<tbody>
<tr>
<td>D0</td>
<td>b1</td>
<td>b2</td>
<td>b3</td>
</tr>
<tr>
<td>D1</td>
<td>b4</td>
<td>b5</td>
<td>b6</td>
</tr>
<tr>
<td>D2</td>
<td>b7</td>
<td>b8</td>
<td>b9</td>
</tr>
</tbody>
</table>

30 Users

Distributed Video Systems - Storage Technologies
3.6 I/O Bandwidth

- **Increasing Disk Throughput**
 - **Disk Striping (Disk Array)**
 - One logical *stripe* is retrieved per stream per round.
 - Hence the throughput is N times those of a single disk if there are N disks in the array.
 - The disks are *spindle synchronized*.

- **Disk Interleaving**
 - Same as disk striping except one logical unit is retrieved from one of the disk per stream per round.
 - Hence each disk can serve a different stream at the same time, or multiple streams are served concurrently.
 - The disks are not spindle synchronized and operates independently.
3.7 Storage Capacity

Tertiary Storage and Storage Hierarchies

Motivation

• While magnetic disks are suitable for use in VoD systems due to the high throughput and low latency, they are still expensive.

• For applications like video library where large number of videos must be archived, storing all video in disks will become prohibitively expensive (and unnecessary).

Tertiary Storage

Pros

– Removable media like optical disks and tapes are less expensive in terms of cost per GB.

Cons

– Lower data transfer rate;
– Very long random access time.

Storage Hierarchy

• Combines the cost-effectiveness of tertiary storage with the performance of magnetic disks.

• Tertiary storage are used for permanent storage and the magnetic disks used as a cache for video delivery.
3.7 Storage Capacity

- Tertiary Storage and Storage Hierarchies
 - Storage Hierarchy

- Scheme 1:
 - Store the beginning segments of videos in magnetic disk and the rest in tertiary storage;
 - Starts delivery from magnetic disk while downloading the rest of the video from the tertiary storage.

- Scheme 2:
 - Downloads an entire video from tertiary storage to magnetic disks for delivery.
 - Manage the disk storage using most-recently-used policy.
 - Long startup time for uncached video but the caching should perform well since only a small number of video will be popular at any one time.