Distributed Video Systems Chapter 3 Storage Technologies

Jack Yiu-bun Lee
Department of Information Engineering
The Chinese University of Hong Kong

Contents

Jack Y.B. Lee

- 3.1 Introduction
- 3.2 Magnetic Disks
- 3.3 Video Retrieval
- 3.4 Disk Scheduling
- 3.5 Admission Control
- 3.6 I/O Bandwidth
- 3.7 Storage Capacity

3.1 Introduction

Jack Y.B. Lee

System Model

- Challenges
 - Real-time storage and retrieval:
 - Continuous media data must be presented using the same timing sequence with which they were captured.
 - Any deviation from this timing sequence can lead to artifacts such as jerkiness in video motion, pops in audio, or possibly complete unintelligibility.

Distributed Video Systems - Storage Technologies

3

3.1 Introduction

Jack Y.B. Lee

- Challenges
 - Real-time storage and retrieval:
 - Media components may also need synchronization. For example, a video stream must synchronize an audio stream in a movie.
 - High data transfer rate and large storage space:
 - Digital video and audio playback demands a high data transfer rate, so that storage space is rapidly filled.
 (E.g. MPEG1 ~ 1.5Mbps, MPEG2 ~ 4Mbps)
 - The server must efficiently store, retrieve, and manipulate data in large quantities at high speeds.

Distributed Video Systems - Storage Technologies

3.2 Magnetic Disks

Jack Y.B. Lee

Disk Model

- The disk platters spin at speed from 3600rpm to 10000rpm;
- Disk heads in all platters move together.
- A disk track is further divided into disk sectors.

Distributed Video Systems - Storage Technologies

5

3.2 Magnetic Disks

Jack Y.B. Lee

- Disk Model
 - Fixed Delays
 - Processing delay at disk controller;
 - Delay at data bus (e.g. SCSI) between disk and controller;
 - · Head-switching time;
 - Variable Delays
 - Rotational Latency
 - Depends on position and spindle speed
 - Seek time
 - Depends on number of tracks to seek
 - Transfer Time
 - Depends on how much data to transfer to host

Distributed Video Systems - Storage Technologies

3.2 Magnetic Disks

Jack Y.B. Lee

- Disk Model
 - Disk-Seek Time Function:

$$T_{seek}\left(n\right) = \alpha + \beta\sqrt{n}$$

$$\text{Number of tracks to seek}$$

$$\text{Seek-time constant (sec)}$$

$$\text{Fixed overhead (sec)}$$

◆ Total Disk-Read Time Function:

Total Disk-Read Time Function:
$$T_{read}(n) = \alpha + \beta \sqrt{n} + T_{latency} + \underbrace{\frac{Q}{R_{disk}}}_{\text{Disk transfer rate (Bytes/sec)}}_{\text{Rotational latency (sec)}}$$

Distributed Video Systems - Storage Technologies

3.2 Magnetic Disks

Jack Y.B. Lee

- Typical Disk Parameters
 - Seagate 4GB ST12400N (SCSI-2)

Disk Parameter	Value
Spindle speed	5411 rpm
Max latency (r)	11ms
Number of tracks	2621
Raw transfer rate	3.35MB/s
Single-track seek	1ms
Max full-stroke seek	19ms

Distributed Video Systems - Storage Technologies

3.2 Magnetic Disks

Jack Y.B. Lee

- Typical Disk Parameters
 - SCSI Variants

Types	Variants	Max. Speed	Number of Devices	Max. Cable Length
SCSI-1		5 MB/s	8	6m
SCSI-2	Fast SCSI	10 MB/s	8	1.5m~3m
	Fast Wide SCSI	20 MB/s	16	1.5m~3m
SCSI-3	Ultra SCSI	20 MB/s	8	1.5m
	Wide Ultra SCSI	40 MB/s	16	1.5m
	Ultra2 SCSI	40 MB/s	8	12m
	Wide Ultra2 SCSI	80 MB/s	16	12m
	Ultra3 SCSI	80 MB/s	8	12m
	Wide Ultra3 SCSI	160 MB/s	16	12m
Fibre Channel	FC-AL	100~200MB/s	126	30m~10km

- Note that the "Max. Speed" is the top speed of the interface.
- The actual achievable speed depends on the performance of the connected disks.

Distributed Video Systems - Storage Technologies

9

3.3 Video Retrieval

Jack Y.B. Lee

• The Bandwidth Landscape:

Distributed Video Systems - Storage Technologies

3.3 Video Retrieval

Jack Y.B. Lee

• Single-Stream Retrieval

• Ideal Disk (Constant Service Time)

Constant delay: $d_i = d_j \ \forall i, j$

Assumes zero transmission time in network.

Distributed Video Systems - Storage Technologies

3.3 Video Retrieval

Jack Y.B. Lee

- Single-Stream Retrieval
 - In Practice (Variable Service Time)
 - Variable delay can cause playback glitches:

Periodic retrieval Intervals

Distributed Video Systems - Storage Technologies

3.3 Video Retrieval

Jack Y.B. Lee

- Single-Stream Retrieval
 - In Practice (Variable Service Time)
 - · Buffering At Server:

• Buffering At Receiver:

Distributed Video Systems - Storage Technologies

13

3.3 Video Retrieval

Jack Y.B. Lee

- Multi-Stream Retrieval
 - One Disk Per Stream
 - Simple but wasteful because disk bandwidth is usually much larger than video bit-rate.
 - E.g. >10Mbps for HD, but MPEG2 only ~4Mbps.
 - Multiple Streams Per Disk
 - A disk scheduling algorithm is required to ensure that the individual streams will not interfere with each other, and the delay constraint is met.
 - There are many disk scheduling algorithms, each with its own strengths and weaknesses.

Distributed Video Systems - Storage Technologies

3.4 Disk Scheduling

Jack Y.B. Lee

- · Conventional Disk Scheduling Algorithms
 - First-Come-First-Serve (FCFS)
 - Service requests in the order they arrive.

- Simple but poor disk utilization.
 - Example:

Very long seek time in this example.

Distributed Video Systems - Storage Technologies

15

3.4 Disk Scheduling

Jack Y.B. Lee

- · Conventional Disk Scheduling Algorithms
 - SCAN
 - Service requests along scanning direction.

- Better disk utilization but potentially long round time.
 - Example:

Service Order: 2 5 4 3 1

Note request 1 has to wait longer even it arrives first!

Distributed Video Systems - Storage Technologies

3.4 Disk Scheduling

Jack Y.B. Lee

- · Multimedia Disk Scheduling Algorithms
 - Earliest Deadline First (EDF)
 - This algorithm schedules the media block with the earliest deadline for retrieval.
 - Likely to yield *excessive* seek time and rotational latency, and *poor* server-resource utilization can be expected.
 - Scan-EDF
 - Same as EDF except using SCAN to schedule requests having the same deadline.

Distributed Video Systems - Storage Technologies

17

3.4 Disk Scheduling

Jack Y.B. Lee

- Disk Scheduling Algorithms for VoD Servers
 - Characteristic of Continuous Media
 - Periodic retrieval of fixed-size data blocks;
 - The entire retrieval schedule is known beforehand.
 - Round-Based Disk Scheduling
 - Read one data block for each video stream in each round.
 - Retrievals in a round are serviced using SCAN.

Distributed Video Systems - Storage Technologies

3.4 Disk Scheduling

Jack Y.B. Lee

- Disk Scheduling Algorithms for VoD Servers
 - Round-Based Disk Scheduling
 - To ensure the continuity of data flow for transmission, we need **two buffers per video stream**.
 - Limitations
 - All video streams must have the same data rate; or
 - The data rate must be an integer multiple of a base data rate.

Distributed Video Systems - Storage Technologies

19

3.5 Admission Control

Jack Y.B. Lee

- Admission Control
 - Motivation
 - A VoD system only have finite capacity. Hence a mechanism must be used to admit and reject users to avoid system overload.
 - Types of Admission Control Algorithms
 - Deterministic
 - Worst-case scenarios are used to guarantee the service of existing users.
 - Statistical
 - Statistical behaviors of the system are used to provide probabilistic guarantee. E.g. meeting deadline 99% of the time.
 - Observational
 - Current system status like utilizations are used to evaluate the admission of new users.

Distributed Video Systems - Storage Technologies

3.5 Admission Control

Jack Y.B. Lee

- Dealing with Missed Deadlines
 - Why?
 - Deadlines could be missed if the admission control algorithm is statistical or some other unexpected events occur.
 - What to do?
 - · Ignore It
 - Causes service degradations such as jerky video, decoding error, scrambled video, audio clicks, etc.
 - Depends on how much and what kind of data is missed.
 - Error Concealment
 - Repeating data (previous frame, audio packet, etc.)
 - Skipping video frame
 - Lower the resolution (temporary)

Distributed Video Systems - Storage Technologies

21

3.6 I/O Bandwidth

Jack Y.B. Lee

- Increasing Disk Throughput
 - Background
 - A single disk's through can serve a very limited number of concurrent users.
 - For example, a SCSI harddisk can serve around 10 MPEG1 video streams and 3~4 MPEG2 video streams.
 - Replication
 - Use multiple disks, each carry a separate copy of a movie.
 - Expensive since movie is large in size.

Distributed Video Systems - Storage Technologies

3.6 I/O Bandwidth

Jack Y.B. Lee

- · Increasing Disk Throughput
 - Partition
 - Use multiple disks, each carry different movie titles.

• Same total storage but poor load-balancing.

Distributed Video Systems - Storage Technologies

23

3.6 I/O Bandwidth

Jack Y.B. Lee

- Increasing Disk Throughput
 - Disk Striping (Disk Array)
 - Divides a video stream into units and distributes over all disks in the array.

Distributed Video Systems - Storage Technologies

3.6 I/O Bandwidth

Jack Y.B. Lee

- Increasing Disk Throughput
 - Disk Striping (Disk Array)
 - One logical stripe is retrieved per stream per round.

- Hence the throughput is *N* times those of a single disk if there are *N* disks in the array.
- The disks are spindle synchronized.

Distributed Video Systems - Storage Technologies

25

3.6 I/O Bandwidth

Jack Y.B. Lee

- Increasing Disk Throughput
 - Disk Interleaving
 - Same as disk striping except one logical unit is retrieved from one of the disk per stream per round.

- Hence each disk can serve a different stream at the same time, or multiple streams are served concurrently.
- The disks are not spindle synchronized and operates independently.

Distributed Video Systems - Storage Technologies

3.7 Storage Capacity

Jack Y.B. Lee

- Tertiary Storage and Storage Hierarchies
 - Motivation
 - While magnetic disks are suitable for use in VoD systems due to the high throughput and low latency, they are still expensive.
 - For applications like video library where large number of videos must be archived, storing all video in disks will become prohibitively expensive (and unnecessary).
 - Tertiary Storage

Feature	Magnetic Disk	Optical Disk	Low-end Tape	High-end Tape
Capacity	9GB	200GB	500GB	10TB
Mount time	None	20 secs	60 secs	90 secs
Transfer Rate	2MBps	300KBps	100KBps	1MBps
Cost	\$5,000	\$50,000	\$50,000	\$0.5M to \$1M
Cost/GB	\$555	\$125	\$100	\$50

Distributed Video Systems - Storage Technologies

2

3.7 Storage Capacity

Jack Y.B. Lee

- Tertiary Storage and Storage Hierarchies
 - Tertiary Storage
 - Pros
 - Removable media like optical disks and tapes are less expensive in terms of cost per GB.
 - Cons
 - Lower data transfer rate;
 - Very long random access time.
 - Storage Hierarchy
 - Combines the cost-effectiveness of tertiary storage with the performance of magnetic disks.
 - Tertiary storage are used for permanent storage and the magnetic disks used as a cache for video delivery.

Distributed Video Systems - Storage Technologies

3.7 Storage Capacity

Jack Y.B. Lee

- Tertiary Storage and Storage Hierarchies
 - Storage Hierarchy

Distributed Video Systems - Storage Technologies

20

3.7 Storage Capacity

Jack Y.B. Lee

- Tertiary Storage and Storage Hierarchies
 - Storage Hierarchy
 - Scheme 1:
 - Store the beginning segments of videos in magnetic disk and the rest in tertiary storage;
 - Starts delivery from magnetic disk while downloading the rest of the video from the tertiary storage.
 - Scheme 2:
 - Downloads an entire video from tertiary storage to magnetic disks for delivery.
 - Manage the disk storage using most-recently-used policy.
 - Long startup time for uncached video but the caching should perform well since only a small number of video will be popular at any one time.

Distributed Video Systems - Storage Technologies