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Abstract 
 

In recent years, a number of sophisticated 
architectures have been proposed to provide VoD service 
using multicast transmissions. Compared to their unicast 
counterparts, these multicast VoD systems are highly 
scalable and can potentially serve millions of concurrent 
users. Nevertheless, these systems are designed for 
streaming constant-bit-rate (CBR) encoded videos and 
thus cannot benefit from the improved visual quality 
obtainable from variable-bit-rate (VBR) encoding 
techniques. To tackle this challenge, this paper presents a 
novel Slice-and-Patch (S&P) algorithm to support VBR 
video streaming in a multicast VoD system. Extensive 
trace-driven simulations are conducted to compare 
performance of the S&P algorithm with two other 
algorithms based on priority scheduling. Results show 
that the S&P algorithm outperforms the other two priority 
scheduling algorithms for most videos. Compared to the 
CBR counterpart serving videos of the same average 
bitrate, the S&P algorithm is able to support VBR video 
streaming with only 50% increase in latency. Given that 
VBR-encoded video can achieve visual quality 
comparable to CBR-encoded video at half the bitrate, this 
S&P algorithm can potentially achieve perform 
comparable to CBR-based systems when combined with 
VBR encoding techniques. 

 

1. Introduction 

In a true-video-on-demand (TVoD) system, the video 
server has to reserve a dedicated video channel for each 
user for the duration of the session (e.g. two hours for a 
movie). Consequently, the server and network resources 
required increase linearly with the number of concurrent 
users to be supported. Although current PC servers are 
already very powerful and capable to serve up to 

hundreds of concurrent video streams, scaling up a system 
to beyond the thousands and even millions of concurrent 
video streams is still prohibitively expensive. 

One promising solution to this scalability challenge is 
through the intelligent use of network multicast. Network 
multicast enables a server to send a few streams of video 
data for reception by a large number of clients, thereby 
significantly reducing the amount of resources required. 
A number of pioneering studies have investigated such 
architectures, such as batching [1-3], patching [4-7], and 
periodic broadcasting [8-11].  

A common assumption with these multicast VoD 
architectures is that the videos are constant-bit-rate (CBR) 
encoded. This significantly simplifies system design and 
analysis, and enables one to study the system performance 
independent from video encoding variations. 
Nevertheless, the visual quality of CBR video is not 
constant and tends to vary according to the video content. 
For example, complex video scenes with a lot of motions 
will typically result in lower visual quality than simple 
video scenes with little movement. 

By contrast, videos encoded with constant-quality 
encoding algorithms will have consistent visual quality, at 
the expense of bitrate variations. A study by Tan et al. 
[12] had shown that VBR-encoded video can achieve 
visual quality similar to CBR-encoded video using only 
half the bitrate. This result suggests that VBR encoding is 
desirable for providing high-quality VoD services. The 
challenge is the complex resource allocation and 
scheduling problems resulting from the video bitrate 
variations. 

This study addresses this challenge and presents a 
slice-and-patch (S&P) algorithm for allocating resources 
and scheduling video data transmissions in a multicast 
VoD system proposed by Lee and Lee [13]. The original 
multicast VoD system is designed for CBR videos, and 
combines techniques of batching, patching, and periodic 
broadcasting. This multicast VoD system can be scaled up 
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to an unlimited number of concurrent users and thus is 
most suitable for serving popular movies in a 
metropolitan-scale VoD service. We give a brief 
overview of this VoD architecture in Section III and refer 
the interested readers to Lee and Lee [13] for details. 

The S&P algorithm is designed with two principles. 
First, video data corresponding to video bitrate peaks are 
prefetched at startup. This step reduces the worst-case 
peak rate of the video stream, and thus allows more 
efficient resource allocations. Second, the video stream, 
minus the previously-mentioned peaks, is sliced into two 
sub-streams of lower bitrates and multicast periodically in 
two static multicast channels. A client, after prefetching 
the peaks, will initiate patching to begin playback using a 
dynamically allocated video channel while at the same 
time, caches video data from the static multicast channels. 
Eventually, video playback will reach the point where 
video data are already cached and the client can then 
release the dynamic channel and continue video playback 
using data received from the multicast channels. 

We use simulations to study and compare the S&P 
algorithm with another two algorithms based on priority 
scheduling. Our simulation results show that the S&P 
algorithm outperforms the priority scheduling algorithm 
for most of the 50 tested videos. Compared to the CBR 
version of the system, the S&P algorithm can serve VBR 
videos of the same average bitrate with an average latency 
increase of only 50%. As VBR-encoded video requires 
only half the bitrate to achieve the same quality as CBR-
encoded video, this S&P algorithm can potentially 
support VBR video streaming with resources comp arable 
to CBR-based VoD systems. 

The rest of the paper is organized as follows. Section II 
reviews some related works and compares them with this 
study; Section III reviews the multicast VoD architecture; 
Section IV presents the two priority scheduling 
algorithms; Section V presents the Slice-and-Patch 
algorithm; Section VI evaluates and compares the three 
algorithms using simulation results; and Section VII 
concludes the paper. 

2. Background 

The problem of VBR video delivery in unicast VoD 
systems has been studied extensively. We review some of 
the more relevant previous works in Section A and 
compare them with this study in Section B. 
2.1. Previous Work 

One of the most well-known solutions for VBR video 
delivery is temporal smoothing [14-17]. Smoothing 
makes use of a client-side buffer to receive data in 
advance of playback. This work-ahead technique enables 
the server to transmit video data in a piecewise linear 
schedule that can be optimized to minimize rate 
variability [15] or to minimize the number of rate changes 

[16]. The schedule can be computed offline and with 
proper resource reservation, deterministic performance 
can be guaranteed. Interested readers are referred to Feng 
et al. [17] for a thorough comparison of various 
smoothing algorithms. 

In another study by Lee and Yeom [18], a data 
prefetch technique is proposed to improve video server 
performance in serving VBR videos. Unlike smoothing, 
where all video data are retrieved from the disk in 
sequence, data prefetching preloads video data 
corresponding to a video’s bitrate peaks into the server’s 
memory during system initialization. During operation, 
the server then only needs to retrieve the remaining video 
data from the disk to combine with the prefetched data for 
transmission to the clients. As the remaining video stream 
has a lower peak bitrate, disk utilization is increased. 
Their simulation results show that up to 81% more 
streams can be served using this prefetch technique. The 
tradeoffs are increased server buffer requirement and 
additional offline preprocessing of the video data.  

A third approach proposed by Saparilla et al. [8], 
schedules video data transmission using a priority 
scheduler (the Join-the-Shortest Queue). In particular, the 
server schedules video data transmission according to the 
demand of data of each channel. A channel with the 
greatest demand of data (the clients listening to this 
channel is most likely to run out of data) will have the 
highest priority in the next round of transmission. 
However, while server efficiency is improved, this 
priority scheduler does not guarantee a client can receive 
all data in time. In particular, a channel will simply be 
skipped (i.e. not transmitted) if the data cannot be 
transmitted in time for playback. Their simulation results 
show that with their Join-the-Shortest Queue priority 
scheduling and allowing the client to retrieve data from 
seven channels synchronously, the start-up latency can be 
limited to around 100 seconds with a loss probability of 
10-6. 

2.2. Comparison 

Compared to the S&P algorithm investigated in this 
study, both temporal smoothing and the data prefetch 
techniques discussed previously are orthogonal and 
complementary. For temporal smoothing, a smoothed 
VBR video stream can be considered as just another VBR 
video stream, albeit one requiring additional client buffer 
for proper playback. For the data prefetch technique, the 
focus is on improving disk retrieval efficiency by 
intelligently preloading some video data into the server 
memory. Obviously, this technique does not affect the 
transmission schedule at all and thus can be integrated 
with any transmission scheduling algorithms including 
S&P.  

Compares to the study by Saparilla et al. [8], S&P 
differs in two major ways. First, the S&P algorithm 
guarantees that no video data will be skipped, thus 
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ensuring visual quality. Second, S&P is targeted to clients 
with limited access bandwidth (twice the average bit rate 
of the video). By contrast, the algorithm proposed by 
Saparilla et al. assumes the client to have sufficient 
bandwidth to receive data from many channels 
simultaneously, which currently may not be practical.  

This study is a first step in exploring algorithms for 
supporting VBR video delivery in multicast VoD 
systems. Designing the S&P algorithm reveals many 
difficulties and challenges that are not present in 
conventional unicast VoD systems. Nevertheless, this will 
be an important area as VBR encoding is necessary to 
provide good visual quality, plus multicast VoD systems 
may be the only way to deploy cost-effective 
metropolitan-scale VoD services in the near future.  

3. System Architecture  

In this section, we give a brief overview of the 
multicast VoD architecture − super-scalar VoD (SS-
VoD), investigated in this paper. The system comprises a 
number of service nodes delivering video data over 
multicast channels to the clients. SS-VoD achieves 
scalability and bandwidth efficiency by sending video 
data to a large number of clients using a few multicast 
channels. However, simple periodic multicast schemes 
such as those used in a near-video-on-demand (NVoD) 
system limit the time for which a client may start a new 
video session. Depending on the number of multicast 
channels allocated for a video title, this startup delay can 
range from a few minutes to tens of minutes. To tackle 
this initial delay problem, SS-VoD employ patching to 
enable a client to start video playback at any time using a 
dynamic multicast channel until it can be merged back 
onto an existing multicast channel. The following sections 
present these techniques in more detail. 
3.1. Transmission Scheduling 

Each service node in the system streams video data 
into multiple multicast channels. Let M be the number of 
video titles served by each service node and let N be the 
total number of multicast channels available to a service 
node. For simplicity, we assume N is divisible by M  and 
hence each video title is served by the same number of 
multicast channels, denoted by NM=N/M. These multicast 
channels are then divided into two groups of NS static 
multicast channels and ND=NM−NS dynamic multicast 
channels.  

The video title is multicast repeatedly over all NS static 
mu lticast channels in a time-staggered manner as shown 
in Fig. 1. Specifically, adjacent channels are offset by 

 /R ST L N=  (1) 

seconds, where L is the length of the video in seconds. 
Transmissions are repeated continuously, i.e. restarted 
from the beginning of a video title every time 

transmission completes, regardless of the load of the 
server or how many users are active. These static 
multicast channels are used as the main channels for 
delivering video data to the clients. A client may start out 
with a dynamic multicast channel but it will shortly be 
merged back to one of these static multicast channels as 
explained in the next section.  
3.2. Admission Control 

To reduce the response time while still leveraging the 
bandwidth efficiency of multicast, SS-VoD allocates a 
portion of the multicast channels and schedules them 
dynamically according to the request arrival pattern. A 
new user either waits for the next upcoming multicast 
transmission from a static multicast channel, or starts 
playback with a dynamic multicast channel.  

Suppose a new request arrives at time t0, which is 
between the start time of the previous multicast cycle, 
denoted by tm, and the start time of the next multicast 
cycle, denoted by tm+1 (see Fig. 1). The new request will 
be assigned to wait for the next multicast cycle to start 
playback if the waiting time, denoted by wi, is equal to or 
smaller than a predefined admission threshold 2δ, i.e., 

1 0 2i mw t t δ+= − ≤ . We call these requests statically-

admitted. This admission threshold is introduced to 
reduce the amount of load going to the dynamic multicast 
channels.  

On the other hand, if the waiting time is longer than 
the threshold, then the client will request a dynamic 
multicast channel to begin playback (dynamically 
admitted), while at the same time caches video data from 
the multicast channel with the multicast cycle started at 
time tm. Note that the client may need to queue up and 
wait for a dynamic multicast channel to become available. 
If additional clients requesting the same video arrives 
during the wait, they will be batched together and served 
by the same dynamic multicast channel once it becomes 
available. Eventually, the client playback will reach the 
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Figure 1. The patching process in the super-
scalar video-on-demand system supporting 

CBR video. 
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point where the cached data began and the client can then 
release the dynamic multicast channel and continue 
playback using data received from the static multicast 
channel. This integration of batching with patching 
significantly increases the system’s efficiency at heavy 
loads. 

Compared to TVoD systems, a SS-VoD client must 
have the capability to receive two multicast channels 
concurrently and have a local buffer large enough to hold 
up to TR seconds of video data. Given a video bitrate of 
3Mbps (e.g. high-quality MPEG-4 video), a total of 
6Mbps downstream bandwidth is required during the 
initial patching phase of the video session. For a two-hour 
movie served using 25 static multicast channels, the 
buffer requirement is 108MB. This can easily be 
accommodated today using a small harddisk in the client, 
and in the near future simply using memory as technology 
improves. 
3.3. Challenges in Supporting VBR-encoded Video 

The SS-VoD architecture is originally designed for 
CBR videos. A problem arises if we want to support VBR 
videos. Specifically, although a client has the capability to 
receive twice the video bitrate, it may not be sufficient to 
support two channels of VBR video of the same average 
bitrate due to bitrate variations. The use of temporal 
smoothing can alleviate this problem but cannot solve it 
completely without adding excessive start-up delay. We 
investigate in the next section two possible solutions to 
this problem based on priority scheduling. 

4.  Priority Scheduling 

The primary problem with supporting VBR video in 
SS-VoD is that dynamically-admitted clients may not 
have sufficient access bandwidth to accommodate both 
the dynamic and a static multicast channel. For example, 
let RV be the average video bitrate, then the client has an 
access bandwidth of 2RV. However, a VBR video of 
average rate RV will likely have bitrate peaks (valleys) 
higher (lower) than RV even after smoothing is applied. It 
is easy to see that the access channel will become 
congested whenever peaks from both dynamic channel 
and static channel overlap. 

Assuming client access bandwidth is limited, then we 
will need to prioritize the transmission and reception of 
video data to stay within the given access bandwidth. The 
following sections present two such priority-scheduling 
algorithms.  
4.1. Static Channel Priority 

In the static channel priority algorithm, we let the static 
channels transmit at the original video bitrate and adjust 
the transmission rate of the dynamic channel to fit within 
the access bandwidth limit. Let v(t ) be the video data 
consumption rate function that defines the rate at which 
video data are being consumed t seconds after playback 

has begun. Assume the client arrives at time t0, and the 
immediate previous multicast cycle begins at time tm, then 
the client will be caching video data starting from a 
playback point of tc=t0−tm and the amount of access 
bandwidth left for the dynamic channel at time t is equal 
to u(t) = 2RV − v(t−tm) for t≥t0.  

As the client does not yet have any video data of 
playback point earlier than tc, a dynamic channel will be 
allocated to begin streaming data from the beginning of 
the video to the playback point tc. If the bandwidth 
available to the dynamic channel is sufficient for 
streaming the video, i.e., u(t)≥v(t−t0−w) for  
(t0+w) ≤ t ≤ (t0+w+tc) : 

 
( )

( ) ( )
0 0

0

0 0

( ) ,

    for  

t w t w

c

u t dt v t t w dt

t w t w t

τ τ

τ
+ +

≥ − −

+ ≤ + +

∫ ∫  (2) 

where w is time waiting for the dynamic channel, then no 
further action needs to be done. Otherwise, the client 
cannot begin playback immediately when data are 
received because playback continuity cannot be sustained 
when the condition in (1) fails. 

To tackle this problem, the client will have to delay the 
playback by ts seconds so that the continuity condition is 
satisfied: 

 
( )

( ) ( )
0 0

0

0 0

( ) ,

    for  
s

s

t w t w t

s c

u t dt v t t w t dt

t w t t w t

τ τ

τ
+ + +

≥ − − −

+ + ≤ + +

∫ ∫  (3) 

and this is also the tradeoff for this algorithm. 
4.2. Dynamic Channel Priority 

To avoid the startup delay in the previous static 
channel priority algorithm, we can give priority to the 
dynamic channel during admission. Unlike the previous 
algorithm, we cannot simply transmit video data of the 
static channel using the left-over access bandwidth 
because the static channels are periodically multicast in a 
fixed schedule to a large number clients. Therefore, once 
a dynamic channel becomes available, the server will 
transmit video data from the beginning of the video at the 
maximum rate 2RV until it catches up with the playback 
point, say s, currently being multicast by the static 
channel. At that instant, the client can then releases the 
dynamic channel and continue receiving data from the 
static channel for the rest of the session. 

Similarly, we again invoke the playback continuity 
condition to find the value of s that satisfies the following 
condition:  

 
( ) ( )

( )

0

0

0

2 ,

    where  

s

VR s t w v t dt

s t w

− − =

≥ +

∫  (4) 

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02) 

1521-9097/02 $17.00 © 2002 IEEE 



This algorithm does not incur start-up delay but a 
dynamic channel will consume more resource than the 
same in the static priority algorithm for two reasons. First, 
the dynamic channel itself will be streamed at the 
maximum access bitrate. Second, the client cannot cache 
video data from the static channel while the dynamic 
channel is streaming. This increases the time the dynamic 
channel takes to catch up with the static channel. Both 
factors increase a dynamic channel’s bandwidth  
consumption and will result in a longer time to wait for an 
available dynamic channel.  

5.  Slice-and-Patch 

The two algorithms presented in the previous section 
both have their tradeoffs. In this section, we present a 
slice-and-patch (S&P) algorithm that combines the virtues 
of the static channel priority and the dynamic channel 
priority algorithms. In S&P, we divide the video stream 
into three portions (i.e. slicing) and admit clients using a 
three-phase patching process (i.e. patching). The 
following sections present the algorithm in detail. 

5.1. Video Slicing 

Video slicing is an offline process that divides a video 
data stream into three parts (i.e. slices) for transmission in 
three separate multicast channels. As shown in Fig. 2, the 
video data stream is sliced at two bitrates: Rcut and 
Rmax−Rcut. The parameter Rcut is configurable from RV to 
(2/3)Rmax and can be optimized for a particular video.  

To generate the first part − Slice A, we collect all 
video data exceeding the bitrate Rcut (e.g. A1, A2, etc., in 
Fig. 2), starting from the beginning of the video until the 
playback point TA given by 

 
max

cut
A R

cut

R
T T

R R

 
=  − 

 (5) 

where Rmax is the maximum access bandwidth of the 
client, and TR is the repeating interval for the static 
multicast channels. We will derive TA in Section C when 
we explain the three-phase patching process. The purpose 
of this slicing is to reduce the peak rate of the video 
stream to prevent congesting  the  client’s  access  channel 

during patching. The resultant slice will be repeatedly 
multicast over a dedicated channel at a constant bitrate 
Rmax as shown in Fig. 3. Assume the size of the block is A  
Mb, then the slice will be multicast repeatedly once every 
tda=A/Rmax seconds. 

The second part − Slice B in Fig. 2, comprises two 
portions. The first portion, covering the first TA seconds of 
the video, comprises the remaining video data that 
exceeds the bitrate (Rmax−Rcut). The second portion, 
covering from playback point TA until the end of the 
video, comprises all video data that exceeds the bitrate 
(Rmax−Rcut). This slice will be multicast repeatedly over a 
separate multicast channel following the actual video data 
rate (as opposed to the constant transmitting rate for Slice 
A).  

Lastly, the third part, − Slice C in Fig. 2, comprises the 
rest of the video data. This slice will be multicast 
repeatedly over a separate multicast channel following the 
actual video data rate, but no higher than (Rmax−Rcut). 
5.2. Bandwidth Allocation 

Let Bmax be the total server (or network, whichever is 
smaller) bandwidth available for a video of average 
bitrate RV Bps and length L seconds. First, a bandwidth of 
Rmax will be allocated for multicasting Slice A. Then the 
remaining bandwidth will be equally divided between 
dynamic multicast channels and static multicast channels. 
Simulation results have shown that this equal allocation 
always results in the best performance. 

There are two types of static multicast channels, one 
type transmitting Slice B and the other transmitting Slice 
C. As the number of these channels are equal, we will 
refer a pair of such channels as a static multicast channel. 
Unlike the case of CBR videos, a static multicast channel 
in S&P does not occupy a fixed bandwidth. Therefore 
offline numerical procedures are needed to compute the 
maximum number of static multicast channels that can fit 
within the bandwidth (Bmax−Rmax)/2. The remaining 
bandwidth will be used by the dynamic channels. 
5.3. Three-Phase Patching 

A new client will go through a three-phase patching 
process to begin a new video streaming session. Let the 
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client arrives at time t0. It immediately enters Phase 1 by 
caching Slice A at the maximum rate Rmax for a duration 
of tda seconds (see Fig. 4). Next, the client will request a 
dynamic channel to begin Phase 2. Once a dynamic 
channel becomes available at time t1, the client begins 
receiving and playing back video data blocks {B1, C1} 
while simultaneously caching block C2 into a local buffer. 
Note that the length of the blocks {B1, C1} is equal to 
t1−tm seconds and this is also the duration of Phase 2. 

At the beginning of Phase 3, the client will have 
cached block C2 and completed playback of blocks {B1, 
C1}. As Fig. 4 shows, to continue playback the client will 
need block B2. This is supplied by the dynamic channel at 
the bitrate Rmax−Rcut, as the static channel transmitting 
blocks {B3, C3} occupies the remaining bandwidth of Rcut.  

Since the size of block B2 is equal to 
(2Rcut−Rmax)(t1−tm), the time it takes to transmit this block 
at the rate of Rmax−Rcut will be equal to 
(2Rcut−Rmax)(t1−tm)/(Rmax−Rcut). To derive the duration of 
Phase 3, we note that (t1−tm) must be smaller than TR and 
thus the duration will be bounded by 
(2Rcut−Rmax)TR/(Rmax−Rcut), which equals to TA in (5) after 
simplification. After Phase 3 is completed, the client 
releases the dynamic channel and continues playback 
using data received from the static channel for the rest of 
the video session. 

6.  Performance Evaluation 

In this section, we evaluate the three algorithms 
presented in Section IV and Section V using simulation. 
The simulator is developed using the CNCL simulation 
library [19] and the simulations are conducted using 50 
VBR video bitrate traces measured from DVD videos. To 
facilitate comparison, we scaled the video bitrate traces so 
that all videos have the same average bitrate of 3Mbps. 

The server is configured with a total bandwidth of 
150Mbps and the client an access bandwidth of 6Mbps. 
Each simulation run simulates a duration of 30 days, with 
the first day of data skipped to reduce initial condition 
effects. The client arrival rate is 1 request per second.  

For the S&P algorithm, we set the parameter Rcut to 
equal to 1.1Rt, where Rt is the average bitrate of the first 
2TR seconds of the video. Clearly this may not be optimal 
and we are investigating an efficient way to find the 
optimal Rcut value, without running a huge number of 
simulation runs. 

Fig. 5 plots the simulation results for the three 
algorithms for 50 different videos. The vertical axis is the 
percentage increase in latency compared to the same 
system serving CBR video of the same length and average 
bitrate (i.e. 3Mbps). Thus this shows the cost of 
supporting VBR-encoded video instead of CBR-encoded 
video, although the VBR-encoded video will have better 
visual quality [12]. 

There are several observations from the simulation 
results. First, in terms of average latency increase 
computed from all 50 videos, S&P performs best at 50%, 
Dynamic Channel Priority second at 120%, and Static 
Channel Priority worst at 550%. Second, in terms of 
variations in latency increases, Dynamic Channel Priority 
is best with consistent latency increases across all 50 
videos (the standard deviation is only 14%). S&P has 
more variations at a standard deviation of 40%. Static 
Channel Priority is the worst one with a huge standard 
deviation of 865%, and a maximum latency increase over 
2,000%. The higher variation in Static Channel Priority is 
due to variations in the bit-rate of the video’s initial 
portion. In particular, the algorithm allocates more 
bandwidth to cache from the static channel video data that 
cannot be immediately played back. Therefore if the 
initial video portion has a high bit-rate, then the dynamic 
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channel will take a longer time to cache sufficient video 
data to begin playback. By contrast, the Dynamic Channel 
Priority and the S&P algorithms are less sensitive to this 
effect because both algorithms allocate more bandwidth 
to cache video data that can be played back immediately. 

Comparing the three algorithms, the S&P algorithm 
clearly performs best except for a few videos. Although 
on average the latency is still increased by 50%, this did 
not account for the improved visual quality due to the use 
of VBR encoding techniques. Given that VBR-encoded 
video could achieve visual quality comparable to CBR-
encoded video at twice the video bitrate, this S&P 
algorithm can potentially achieve performance 
comparable to CBR-based systems with the proper choice 
of VBR encoding parameters.  

The simulation results are obtained by simulating each 
video individually. In a real system with multiple videos, 
one can further improve system efficiency by allocating 
channels according to the video’s popularity. Further 
investigations are needed to quantify the potential 
performance gains and also tradeoffs in applying non-
uniform channel allocation policies.  

7. Conclusions  

This paper investigated a multicast VoD system 
supporting streaming of VBR-encoded video. Unlike 
unicast-based VoD system, existing algorithms such as 
temporal smoothing do not cater for the characteristics of 
multicast VoD systems, such as the use of periodic 
multicast and the limitation of client access bandwidth. 
Therefore new streaming algorithms are needed, and three 
such algorithms, namely Static Channel Priority, 
Dynamic Channel Priority, and Slice-and-Patch are 
studied in this paper. Using simulation, we found that the 
Slice-and-Patch algorithm generally outperforms the other 
two except for a few videos. We suspect that the 
exceptions are due to the non-optimal configuration of the 
Rcut parameter in S&P. We are currently running 
additional simulations to further investigate this issue. 
Nevertheless, with a modest 50% latency increase over 
the case with CBR-encoded video, this S&P algorithm 
has a very good potential to achieve performance 
comparable to CBR systems with similar resources. 
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