
Slice-and-Patch − An Algorithm to Support VBR Video Streaming in a Multicast-
based Video-on-Demand System

C. W. Kong
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
cwkong1@ie.cuhk.edu.hk

Jack Y. B. Lee
Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
yblee@ie.cuhk.edu.hk

Abstract

In recent years, a number of sophisticated
architectures have been proposed to provide VoD service
using multicast transmissions. Compared to their unicast
counterparts, these multicast VoD systems are highly
scalable and can potentially serve millions of concurrent
users. Nevertheless, these systems are designed for
streaming constant-bit-rate (CBR) encoded videos and
thus cannot benefit from the improved visual quality
obtainable from variable-bit-rate (VBR) encoding
techniques. To tackle this challenge, this paper presents a
novel Slice-and-Patch (S&P) algorithm to support VBR
video streaming in a multicast VoD system. Extensive
trace-driven simulations are conducted to compare
performance of the S&P algorithm with two other
algorithms based on priority scheduling. Results show
that the S&P algorithm outperforms the other two priority
scheduling algorithms for most videos. Compared to the
CBR counterpart serving videos of the same average
bitrate, the S&P algorithm is able to support VBR video
streaming with only 50% increase in latency. Given that
VBR-encoded video can achieve visual quality
comparable to CBR-encoded video at half the bitrate, this
S&P algorithm can potentially achieve perform
comparable to CBR-based systems when combined with
VBR encoding techniques.

1. Introduction

In a true-video-on-demand (TVoD) system, the video
server has to reserve a dedicated video channel for each
user for the duration of the session (e.g. two hours for a
movie). Consequently, the server and network resources
required increase linearly with the number of concurrent
users to be supported. Although current PC servers are
already very powerful and capable to serve up to

hundreds of concurrent video streams, scaling up a system
to beyond the thousands and even millions of concurrent
video streams is still prohibitively expensive.

One promising solution to this scalability challenge is
through the intelligent use of network multicast. Network
multicast enables a server to send a few streams of video
data for reception by a large number of clients, thereby
significantly reducing the amount of resources required.
A number of pioneering studies have investigated such
architectures, such as batching [1-3], patching [4-7], and
periodic broadcasting [8-11].

A common assumption with these multicast VoD
architectures is that the videos are constant-bit-rate (CBR)
encoded. This significantly simplifies system design and
analysis, and enables one to study the system performance
independent from video encoding variations.
Nevertheless, the visual quality of CBR video is not
constant and tends to vary according to the video content.
For example, complex video scenes with a lot of motions
will typically result in lower visual quality than simple
video scenes with little movement.

By contrast, videos encoded with constant-quality
encoding algorithms will have consistent visual quality, at
the expense of bitrate variations. A study by Tan et al.
[12] had shown that VBR-encoded video can achieve
visual quality similar to CBR-encoded video using only
half the bitrate. This result suggests that VBR encoding is
desirable for providing high-quality VoD services. The
challenge is the complex resource allocation and
scheduling problems resulting from the video bitrate
variations.

This study addresses this challenge and presents a
slice-and-patch (S&P) algorithm for allocating resources
and scheduling video data transmissions in a multicast
VoD system proposed by Lee and Lee [13]. The original
multicast VoD system is designed for CBR videos, and
combines techniques of batching, patching, and periodic
broadcasting. This multicast VoD system can be scaled up

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

to an unlimited number of concurrent users and thus is
most suitable for serving popular movies in a
metropolitan-scale VoD service. We give a brief
overview of this VoD architecture in Section III and refer
the interested readers to Lee and Lee [13] for details.

The S&P algorithm is designed with two principles.
First, video data corresponding to video bitrate peaks are
prefetched at startup. This step reduces the worst-case
peak rate of the video stream, and thus allows more
efficient resource allocations. Second, the video stream,
minus the previously-mentioned peaks, is sliced into two
sub-streams of lower bitrates and multicast periodically in
two static multicast channels. A client, after prefetching
the peaks, will initiate patching to begin playback using a
dynamically allocated video channel while at the same
time, caches video data from the static multicast channels.
Eventually, video playback will reach the point where
video data are already cached and the client can then
release the dynamic channel and continue video playback
using data received from the multicast channels.

We use simulations to study and compare the S&P
algorithm with another two algorithms based on priority
scheduling. Our simulation results show that the S&P
algorithm outperforms the priority scheduling algorithm
for most of the 50 tested videos. Compared to the CBR
version of the system, the S&P algorithm can serve VBR
videos of the same average bitrate with an average latency
increase of only 50%. As VBR-encoded video requires
only half the bitrate to achieve the same quality as CBR-
encoded video, this S&P algorithm can potentially
support VBR video streaming with resources comp arable
to CBR-based VoD systems.

The rest of the paper is organized as follows. Section II
reviews some related works and compares them with this
study; Section III reviews the multicast VoD architecture;
Section IV presents the two priority scheduling
algorithms; Section V presents the Slice-and-Patch
algorithm; Section VI evaluates and compares the three
algorithms using simulation results; and Section VII
concludes the paper.

2. Background

The problem of VBR video delivery in unicast VoD
systems has been studied extensively. We review some of
the more relevant previous works in Section A and
compare them with this study in Section B.
2.1. Previous Work

One of the most well-known solutions for VBR video
delivery is temporal smoothing [14-17]. Smoothing
makes use of a client-side buffer to receive data in
advance of playback. This work-ahead technique enables
the server to transmit video data in a piecewise linear
schedule that can be optimized to minimize rate
variability [15] or to minimize the number of rate changes

[16]. The schedule can be computed offline and with
proper resource reservation, deterministic performance
can be guaranteed. Interested readers are referred to Feng
et al. [17] for a thorough comparison of various
smoothing algorithms.

In another study by Lee and Yeom [18], a data
prefetch technique is proposed to improve video server
performance in serving VBR videos. Unlike smoothing,
where all video data are retrieved from the disk in
sequence, data prefetching preloads video data
corresponding to a video’s bitrate peaks into the server’s
memory during system initialization. During operation,
the server then only needs to retrieve the remaining video
data from the disk to combine with the prefetched data for
transmission to the clients. As the remaining video stream
has a lower peak bitrate, disk utilization is increased.
Their simulation results show that up to 81% more
streams can be served using this prefetch technique. The
tradeoffs are increased server buffer requirement and
additional offline preprocessing of the video data.

A third approach proposed by Saparilla et al. [8],
schedules video data transmission using a priority
scheduler (the Join-the-Shortest Queue). In particular, the
server schedules video data transmission according to the
demand of data of each channel. A channel with the
greatest demand of data (the clients listening to this
channel is most likely to run out of data) will have the
highest priority in the next round of transmission.
However, while server efficiency is improved, this
priority scheduler does not guarantee a client can receive
all data in time. In particular, a channel will simply be
skipped (i.e. not transmitted) if the data cannot be
transmitted in time for playback. Their simulation results
show that with their Join-the-Shortest Queue priority
scheduling and allowing the client to retrieve data from
seven channels synchronously, the start-up latency can be
limited to around 100 seconds with a loss probability of
10-6.

2.2. Comparison

Compared to the S&P algorithm investigated in this
study, both temporal smoothing and the data prefetch
techniques discussed previously are orthogonal and
complementary. For temporal smoothing, a smoothed
VBR video stream can be considered as just another VBR
video stream, albeit one requiring additional client buffer
for proper playback. For the data prefetch technique, the
focus is on improving disk retrieval efficiency by
intelligently preloading some video data into the server
memory. Obviously, this technique does not affect the
transmission schedule at all and thus can be integrated
with any transmission scheduling algorithms including
S&P.

Compares to the study by Saparilla et al. [8], S&P
differs in two major ways. First, the S&P algorithm
guarantees that no video data will be skipped, thus

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

ensuring visual quality. Second, S&P is targeted to clients
with limited access bandwidth (twice the average bit rate
of the video). By contrast, the algorithm proposed by
Saparilla et al. assumes the client to have sufficient
bandwidth to receive data from many channels
simultaneously, which currently may not be practical.

This study is a first step in exploring algorithms for
supporting VBR video delivery in multicast VoD
systems. Designing the S&P algorithm reveals many
difficulties and challenges that are not present in
conventional unicast VoD systems. Nevertheless, this will
be an important area as VBR encoding is necessary to
provide good visual quality, plus multicast VoD systems
may be the only way to deploy cost-effective
metropolitan-scale VoD services in the near future.

3. System Architecture

In this section, we give a brief overview of the
multicast VoD architecture − super-scalar VoD (SS-
VoD), investigated in this paper. The system comprises a
number of service nodes delivering video data over
multicast channels to the clients. SS-VoD achieves
scalability and bandwidth efficiency by sending video
data to a large number of clients using a few multicast
channels. However, simple periodic multicast schemes
such as those used in a near-video-on-demand (NVoD)
system limit the time for which a client may start a new
video session. Depending on the number of multicast
channels allocated for a video title, this startup delay can
range from a few minutes to tens of minutes. To tackle
this initial delay problem, SS-VoD employ patching to
enable a client to start video playback at any time using a
dynamic multicast channel until it can be merged back
onto an existing multicast channel. The following sections
present these techniques in more detail.
3.1. Transmission Scheduling

Each service node in the system streams video data
into multiple multicast channels. Let M be the number of
video titles served by each service node and let N be the
total number of multicast channels available to a service
node. For simplicity, we assume N is divisible by M and
hence each video title is served by the same number of
multicast channels, denoted by NM=N/M. These multicast
channels are then divided into two groups of NS static
multicast channels and ND=NM−NS dynamic multicast
channels.

The video title is multicast repeatedly over all NS static
mu lticast channels in a time-staggered manner as shown
in Fig. 1. Specifically, adjacent channels are offset by

 /R ST L N= (1)

seconds, where L is the length of the video in seconds.
Transmissions are repeated continuously, i.e. restarted
from the beginning of a video title every time

transmission completes, regardless of the load of the
server or how many users are active. These static
multicast channels are used as the main channels for
delivering video data to the clients. A client may start out
with a dynamic multicast channel but it will shortly be
merged back to one of these static multicast channels as
explained in the next section.
3.2. Admission Control

To reduce the response time while still leveraging the
bandwidth efficiency of multicast, SS-VoD allocates a
portion of the multicast channels and schedules them
dynamically according to the request arrival pattern. A
new user either waits for the next upcoming multicast
transmission from a static multicast channel, or starts
playback with a dynamic multicast channel.

Suppose a new request arrives at time t0, which is
between the start time of the previous multicast cycle,
denoted by tm, and the start time of the next multicast
cycle, denoted by tm+1 (see Fig. 1). The new request will
be assigned to wait for the next multicast cycle to start
playback if the waiting time, denoted by wi, is equal to or
smaller than a predefined admission threshold 2δ, i.e.,

1 0 2i mw t t δ+= − ≤ . We call these requests statically-

admitted. This admission threshold is introduced to
reduce the amount of load going to the dynamic multicast
channels.

On the other hand, if the waiting time is longer than
the threshold, then the client will request a dynamic
multicast channel to begin playback (dynamically
admitted), while at the same time caches video data from
the multicast channel with the multicast cycle started at
time tm. Note that the client may need to queue up and
wait for a dynamic multicast channel to become available.
If additional clients requesting the same video arrives
during the wait, they will be batched together and served
by the same dynamic multicast channel once it becomes
available. Eventually, the client playback will reach the

tim

tm

. . .

Static Ch n:

Static Ch n+1:

Dynamic Ch:

Client Playback:

Buffered Data:

tm+1t0

L

Tr

2δ

. . .

t1

BA

A

A B

A
B tim

tm

. . .

Static Ch n:

Static Ch n+1:

Dynamic Ch:

Client Playback:

Buffered Data:

tm+1t0

L

Tr

2δ

. . .

t1

BA

A

A B

A
B

Figure 1. The patching process in the super-
scalar video-on-demand system supporting

CBR video.

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

point where the cached data began and the client can then
release the dynamic multicast channel and continue
playback using data received from the static multicast
channel. This integration of batching with patching
significantly increases the system’s efficiency at heavy
loads.

Compared to TVoD systems, a SS-VoD client must
have the capability to receive two multicast channels
concurrently and have a local buffer large enough to hold
up to TR seconds of video data. Given a video bitrate of
3Mbps (e.g. high-quality MPEG-4 video), a total of
6Mbps downstream bandwidth is required during the
initial patching phase of the video session. For a two-hour
movie served using 25 static multicast channels, the
buffer requirement is 108MB. This can easily be
accommodated today using a small harddisk in the client,
and in the near future simply using memory as technology
improves.
3.3. Challenges in Supporting VBR-encoded Video

The SS-VoD architecture is originally designed for
CBR videos. A problem arises if we want to support VBR
videos. Specifically, although a client has the capability to
receive twice the video bitrate, it may not be sufficient to
support two channels of VBR video of the same average
bitrate due to bitrate variations. The use of temporal
smoothing can alleviate this problem but cannot solve it
completely without adding excessive start-up delay. We
investigate in the next section two possible solutions to
this problem based on priority scheduling.

4. Priority Scheduling

The primary problem with supporting VBR video in
SS-VoD is that dynamically-admitted clients may not
have sufficient access bandwidth to accommodate both
the dynamic and a static multicast channel. For example,
let RV be the average video bitrate, then the client has an
access bandwidth of 2RV. However, a VBR video of
average rate RV will likely have bitrate peaks (valleys)
higher (lower) than RV even after smoothing is applied. It
is easy to see that the access channel will become
congested whenever peaks from both dynamic channel
and static channel overlap.

Assuming client access bandwidth is limited, then we
will need to prioritize the transmission and reception of
video data to stay within the given access bandwidth. The
following sections present two such priority-scheduling
algorithms.
4.1. Static Channel Priority

In the static channel priority algorithm, we let the static
channels transmit at the original video bitrate and adjust
the transmission rate of the dynamic channel to fit within
the access bandwidth limit. Let v(t) be the video data
consumption rate function that defines the rate at which
video data are being consumed t seconds after playback

has begun. Assume the client arrives at time t0, and the
immediate previous multicast cycle begins at time tm, then
the client will be caching video data starting from a
playback point of tc=t0−tm and the amount of access
bandwidth left for the dynamic channel at time t is equal
to u(t) = 2RV − v(t−tm) for t≥t0.

As the client does not yet have any video data of
playback point earlier than tc, a dynamic channel will be
allocated to begin streaming data from the beginning of
the video to the playback point tc. If the bandwidth
available to the dynamic channel is sufficient for
streaming the video, i.e., u(t)≥v(t−t0−w) for
(t0+w) ≤ t ≤ (t0+w+tc) :

()

() ()
0 0

0

0 0

() ,

 for

t w t w

c

u t dt v t t w dt

t w t w t

τ τ

τ
+ +

≥ − −

+ ≤ + +

∫ ∫ (2)

where w is time waiting for the dynamic channel, then no
further action needs to be done. Otherwise, the client
cannot begin playback immediately when data are
received because playback continuity cannot be sustained
when the condition in (1) fails.

To tackle this problem, the client will have to delay the
playback by ts seconds so that the continuity condition is
satisfied:

()

() ()
0 0

0

0 0

() ,

 for
s

s

t w t w t

s c

u t dt v t t w t dt

t w t t w t

τ τ

τ
+ + +

≥ − − −

+ + ≤ + +

∫ ∫ (3)

and this is also the tradeoff for this algorithm.
4.2. Dynamic Channel Priority

To avoid the startup delay in the previous static
channel priority algorithm, we can give priority to the
dynamic channel during admission. Unlike the previous
algorithm, we cannot simply transmit video data of the
static channel using the left-over access bandwidth
because the static channels are periodically multicast in a
fixed schedule to a large number clients. Therefore, once
a dynamic channel becomes available, the server will
transmit video data from the beginning of the video at the
maximum rate 2RV until it catches up with the playback
point, say s, currently being multicast by the static
channel. At that instant, the client can then releases the
dynamic channel and continue receiving data from the
static channel for the rest of the session.

Similarly, we again invoke the playback continuity
condition to find the value of s that satisfies the following
condition:

() ()

()

0

0

0

2 ,

 where

s

VR s t w v t dt

s t w

− − =

≥ +

∫ (4)

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

This algorithm does not incur start-up delay but a
dynamic channel will consume more resource than the
same in the static priority algorithm for two reasons. First,
the dynamic channel itself will be streamed at the
maximum access bitrate. Second, the client cannot cache
video data from the static channel while the dynamic
channel is streaming. This increases the time the dynamic
channel takes to catch up with the static channel. Both
factors increase a dynamic channel’s bandwidth
consumption and will result in a longer time to wait for an
available dynamic channel.

5. Slice-and-Patch

The two algorithms presented in the previous section
both have their tradeoffs. In this section, we present a
slice-and-patch (S&P) algorithm that combines the virtues
of the static channel priority and the dynamic channel
priority algorithms. In S&P, we divide the video stream
into three portions (i.e. slicing) and admit clients using a
three-phase patching process (i.e. patching). The
following sections present the algorithm in detail.

5.1. Video Slicing

Video slicing is an offline process that divides a video
data stream into three parts (i.e. slices) for transmission in
three separate multicast channels. As shown in Fig. 2, the
video data stream is sliced at two bitrates: Rcut and
Rmax−Rcut. The parameter Rcut is configurable from RV to
(2/3)Rmax and can be optimized for a particular video.

To generate the first part − Slice A, we collect all
video data exceeding the bitrate Rcut (e.g. A1, A2, etc., in
Fig. 2), starting from the beginning of the video until the
playback point TA given by

max

cut
A R

cut

R
T T

R R

= −

 (5)

where Rmax is the maximum access bandwidth of the
client, and TR is the repeating interval for the static
multicast channels. We will derive TA in Section C when
we explain the three-phase patching process. The purpose
of this slicing is to reduce the peak rate of the video
stream to prevent congesting the client’s access channel

during patching. The resultant slice will be repeatedly
multicast over a dedicated channel at a constant bitrate
Rmax as shown in Fig. 3. Assume the size of the block is A
Mb, then the slice will be multicast repeatedly once every
tda=A/Rmax seconds.

The second part − Slice B in Fig. 2, comprises two
portions. The first portion, covering the first TA seconds of
the video, comprises the remaining video data that
exceeds the bitrate (Rmax−Rcut). The second portion,
covering from playback point TA until the end of the
video, comprises all video data that exceeds the bitrate
(Rmax−Rcut). This slice will be multicast repeatedly over a
separate multicast channel following the actual video data
rate (as opposed to the constant transmitting rate for Slice
A).

Lastly, the third part, − Slice C in Fig. 2, comprises the
rest of the video data. This slice will be multicast
repeatedly over a separate multicast channel following the
actual video data rate, but no higher than (Rmax−Rcut).
5.2. Bandwidth Allocation

Let Bmax be the total server (or network, whichever is
smaller) bandwidth available for a video of average
bitrate RV Bps and length L seconds. First, a bandwidth of
Rmax will be allocated for multicasting Slice A. Then the
remaining bandwidth will be equally divided between
dynamic multicast channels and static multicast channels.
Simulation results have shown that this equal allocation
always results in the best performance.

There are two types of static multicast channels, one
type transmitting Slice B and the other transmitting Slice
C. As the number of these channels are equal, we will
refer a pair of such channels as a static multicast channel.
Unlike the case of CBR videos, a static multicast channel
in S&P does not occupy a fixed bandwidth. Therefore
offline numerical procedures are needed to compute the
maximum number of static multicast channels that can fit
within the bandwidth (Bmax−Rmax)/2. The remaining
bandwidth will be used by the dynamic channels.
5.3. Three-Phase Patching

A new client will go through a three-phase patching
process to begin a new video streaming session. Let the

Video Playback Time

C 3

A
1

A
2 A

3

A
4

Rm a x

R
cut

Rm a x-Rcut

Bit Rate

Slice B

Slice C

Slice A

T A Video Playback Time

C 3

A
1

A
2 A

3

A
4

Rm a x

R
cut

Rm a x-Rcut

Bit Rate

Slice B

Slice C

Slice A

T A

Figure 2. Video slicing in the Slice-and-Patch
algorithm.

B

Rmax

AAAAAAAA …
Time

Bit Rate

2Rcut –Rm a x

TA

Bit Rate

Time

C
Rmax–R cut

Time

Bit Rate

B

Rmax

AAAAAAAA …
Time

Bit Rate

2Rcut –Rm a x

TA

Bit Rate

Time

CC
Rmax–R cut

Time

Bit Rate

Figure 3. The three types of multicast
channels in the Slice-and-Patch algorithm.

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

client arrives at time t0. It immediately enters Phase 1 by
caching Slice A at the maximum rate Rmax for a duration
of tda seconds (see Fig. 4). Next, the client will request a
dynamic channel to begin Phase 2. Once a dynamic
channel becomes available at time t1, the client begins
receiving and playing back video data blocks {B1, C1}
while simultaneously caching block C2 into a local buffer.
Note that the length of the blocks {B1, C1} is equal to
t1−tm seconds and this is also the duration of Phase 2.

At the beginning of Phase 3, the client will have
cached block C2 and completed playback of blocks {B1,
C1}. As Fig. 4 shows, to continue playback the client will
need block B2. This is supplied by the dynamic channel at
the bitrate Rmax−Rcut, as the static channel transmitting
blocks {B3, C3} occupies the remaining bandwidth of Rcut.

Since the size of block B2 is equal to
(2Rcut−Rmax)(t1−tm), the time it takes to transmit this block
at the rate of Rmax−Rcut will be equal to
(2Rcut−Rmax)(t1−tm)/(Rmax−Rcut). To derive the duration of
Phase 3, we note that (t1−tm) must be smaller than TR and
thus the duration will be bounded by
(2Rcut−Rmax)TR/(Rmax−Rcut), which equals to TA in (5) after
simplification. After Phase 3 is completed, the client
releases the dynamic channel and continues playback
using data received from the static channel for the rest of
the video session.

6. Performance Evaluation

In this section, we evaluate the three algorithms
presented in Section IV and Section V using simulation.
The simulator is developed using the CNCL simulation
library [19] and the simulations are conducted using 50
VBR video bitrate traces measured from DVD videos. To
facilitate comparison, we scaled the video bitrate traces so
that all videos have the same average bitrate of 3Mbps.

The server is configured with a total bandwidth of
150Mbps and the client an access bandwidth of 6Mbps.
Each simulation run simulates a duration of 30 days, with
the first day of data skipped to reduce initial condition
effects. The client arrival rate is 1 request per second.

For the S&P algorithm, we set the parameter Rcut to
equal to 1.1Rt, where Rt is the average bitrate of the first
2TR seconds of the video. Clearly this may not be optimal
and we are investigating an efficient way to find the
optimal Rcut value, without running a huge number of
simulation runs.

Fig. 5 plots the simulation results for the three
algorithms for 50 different videos. The vertical axis is the
percentage increase in latency compared to the same
system serving CBR video of the same length and average
bitrate (i.e. 3Mbps). Thus this shows the cost of
supporting VBR-encoded video instead of CBR-encoded
video, although the VBR-encoded video will have better
visual quality [12].

There are several observations from the simulation
results. First, in terms of average latency increase
computed from all 50 videos, S&P performs best at 50%,
Dynamic Channel Priority second at 120%, and Static
Channel Priority worst at 550%. Second, in terms of
variations in latency increases, Dynamic Channel Priority
is best with consistent latency increases across all 50
videos (the standard deviation is only 14%). S&P has
more variations at a standard deviation of 40%. Static
Channel Priority is the worst one with a huge standard
deviation of 865%, and a maximum latency increase over
2,000%. The higher variation in Static Channel Priority is
due to variations in the bit-rate of the video’s initial
portion. In particular, the algorithm allocates more
bandwidth to cache from the static channel video data that
cannot be immediately played back. Therefore if the
initial video portion has a high bit-rate, then the dynamic

B3B3

C3C3C3

C
3

t0

A

Slice B

Slice C

Client Playback

Dynamic Channel

Slice A

tm t1

B
1

B
2

B1 B3B 2B1 B3B 2

Received Data

2t1–tm

C
1

C
1

C
2

B 1 B3B3B3B 2

B 1

C
1

C
3

C
2

C
1

C
3

C
3

C
3

C
2

C2

C
1

B
2

AA

Rmax

Rcut

Rmax – Rcut

Phase 1 Phase 2 Phase 3

Figure 4. The three-phase patching process in
the Slice-and-Patch algorithm.

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

1 6 11 16 21 26 31 36 41 46
Movie Number

%
 I

nc
re

as
e

Slice and Patch Algorithm

Dynamic Channel Priority

Static Channel Priority

Figure 5. Percentage of latency increases
over CBR-based system for 50 different

videos.

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

channel will take a longer time to cache sufficient video
data to begin playback. By contrast, the Dynamic Channel
Priority and the S&P algorithms are less sensitive to this
effect because both algorithms allocate more bandwidth
to cache video data that can be played back immediately.

Comparing the three algorithms, the S&P algorithm
clearly performs best except for a few videos. Although
on average the latency is still increased by 50%, this did
not account for the improved visual quality due to the use
of VBR encoding techniques. Given that VBR-encoded
video could achieve visual quality comparable to CBR-
encoded video at twice the video bitrate, this S&P
algorithm can potentially achieve performance
comparable to CBR-based systems with the proper choice
of VBR encoding parameters.

The simulation results are obtained by simulating each
video individually. In a real system with multiple videos,
one can further improve system efficiency by allocating
channels according to the video’s popularity. Further
investigations are needed to quantify the potential
performance gains and also tradeoffs in applying non-
uniform channel allocation policies.

7. Conclusions

This paper investigated a multicast VoD system
supporting streaming of VBR-encoded video. Unlike
unicast-based VoD system, existing algorithms such as
temporal smoothing do not cater for the characteristics of
multicast VoD systems, such as the use of periodic
multicast and the limitation of client access bandwidth.
Therefore new streaming algorithms are needed, and three
such algorithms, namely Static Channel Priority,
Dynamic Channel Priority, and Slice-and-Patch are
studied in this paper. Using simulation, we found that the
Slice-and-Patch algorithm generally outperforms the other
two except for a few videos. We suspect that the
exceptions are due to the non-optimal configuration of the
Rcut parameter in S&P. We are currently running
additional simulations to further investigate this issue.
Nevertheless, with a modest 50% latency increase over
the case with CBR-encoded video, this S&P algorithm
has a very good potential to achieve performance
comparable to CBR systems with similar resources.

Acknowledgements

This research is funded by a Direct Grant, and
Earmarked Grants (CUHK 4328/02E) from the HKSAR
Research Grant Council and the AoE-IT, a research grant
from the HKSAR University Grants Council.

References
[1] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling

Policies for an On-Demand Video Server with Batching,”
Proc. 2nd ACM Multimedia, 1994, pp.15-23.

[2] H. Shachnai and P.S. Yu, “Exploring Waiting Tolerance in
Effective Batching for Video-on-Demand Scheduling,”
Proc. 8th Israeli Conference on Computer Systems and
Software Engineering, Jun 1997, pp.67-76.

[3] V.O.K. Li, W. Liao, X. Qui, and E.W.M. Wong,
“Performance Model of Interactive Video-on-Demand
Systems,” IEEE JSAC, vol.14(6), Aug 1996, pp.1099-1109.

[4] W. Liao and V.O.K. Li, “The Split and Merge Protocol for
Interactive Video-on-demand,” IEEE Multimedia, vol.4(4),
1997, pp.51-62.

[5] K.A. Hua, Y. Cai, and S. Sheu, “Pat ching: A Multicast
Technique For True Video-on-Demand Services,” Proc. 6th
International Conf on Multimedia, Sept 1998, pp.191-200.

[6] Y. Cai, K. Hua, and K. Vu, “Optimizing Patching
Performance,” Proc. SPIE/ACM Conference on Multimedia
Computing and Networking, CA, Jan. 1999, pp.204-215.

[7] S.W. Carter, D.D.E. Long, K. Makki, L. M. Ni, M.
Singhal, and N. Pissinou, “Improving Video-on-Demand
Server Efficiency Through Stream Tapping,” Proc. 6th
International Conference on Computer Communications
and Networks, Las Vegas, Sep 1997, pp.200-207.

[8] D. Saparilla, K.W. Ross, and M. Reisslein, “Periodic
Broadcasting with VBR-Encoded Video” Proc. IEEE
Infocom 1999, New York City, US, March 1999.

[9] S. Sen, Gao Lixin, and D. Towsley, “Frame-based Periodic
Broadcast and Fundamental Resource Tradeoffs,” IEEE
International Conference on Performance, Computing, and
Communications, 2001, pp.77-83.

[10] T.C. Chiueh and C.H. Lu, “A Periodic Broadcasting
Approach to Video-on-demand Service,” Proc. of SPIE,
Philadelphia, 1996, pp.2615:162-9.

[11] A. Hu, I. Nikolaidis, and P. van Beek, “On the Design of
Efficient Video-on-Demand Broadcast Schedules,” Proc.
7th International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems,
Maryland, 1999, pp.262-269.

[12] W.S. Tan, N. Duong, and J. Princen, “A Comparison Study
of Variable-bit-rate versus Fixed-bit-rate Video
Transmission,” Proc. Australian Broadband Switching and
Services Symposium, Australia, 1991, pp.134-141.

[13] J.Y. B. Lee and C.H. Lee, “Design, Performance Analysis,
and Implementation of a Super-Scalar Video-on-Demand
System,” submitted for publication.

[14] W. Feng and S. Sechrest, “Smoothing and Buffering for the
Delivery of Pre-recorded Video,” Proc. ISET/SPIE
Multimedia Computing and Networking, San Jose, Feb
1995, pp.234-244.

[15] J.D. Salehi, Z.L. Zhang, J.F. Kuros and D. Towsley,
“Supporting Stored Video: Reducing Rate Variability and
End-to-End Resource Requirements through Optimal
Smoothing”, Proc. of ACM SIGMETERICS, Philadelphia,
May 1996, pp.222-231.

[16] W. Feng, F. Jahanian, and S. Sechrest, “Optimal Buffering
for the Delivery of Compressed Pre-recorded Video,” Proc.
of the IASTED/ISMM Int’l Conf. on Networks , Jan. 1995.

[17] W. Feng, Mishra, and Ramakishnan, “A Comparison of
Bandwidth Smoothing Techniques for the Transmission of
Pre-recorded Compressed Video,” Proc. INFOCOM ’97 ,
vol. 1, Japan, 1997, pp.58-66.

[18] D.Y. Lee and H.Y. Yeom, “Tip Prefetching: Dealing with
the Bit Rate Variability of Video Streams” Proc. of the
IEEE ICMCS 1999, vol. II, Italy, 1999, pp.352-356.

[19] ComNets Class Library and Tools:
http://www.comnets.rwth-aachen.de/doc/cncl.html

Proceedings of the Ninth International Conference on Parallel and Distributed Systems (ICPADS’02)

1521-9097/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

