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Optimizing Channel Allocation in a Unified Video-on-Demand System
Jack Y. B. Lee

Abstract—Unified video-on-demand (UVoD) is a recently pyramid broadcasting approach by Viswanateaml. [6] and
proposed architecture that integrates multicast transmission with - Aggarwalet al. [7], the piggybacking approach by Golubchik
unicast transmission to improve system efficiency. Streaming et al. [8] and Aggarwalet al. [9], and so on. It is beyond the
channels in a UVoD system are divided into unicast and multicast . ’ .
channels, with the multicast channels further divided equally SCOPe of this study to compare these difference approaches and
among all videos. This uniform channel-allocation scheme is the interested readers are referred to [5], [13] for some compar-
simple to design and implement, but the performance may not ative discussions.
be optimal due to differences in video popularity. This paper  This study focuses on one of these approaches: the unified
investigates this channel-allocation problem with the goal of opti- video-on-demand (UVoD) architecture [13], which combines

mizing system efficiency. First, the uniform allocation assumption . - .
is removed and the channel-allocation problem formulated as a the efficiency of near-video-on-demand (NVoD) with the short

nonlinear integer optimization problem. This optimization model latency of TVoD by integrating multicast with unicast transmis-
results in nonuniform channel allocations that can save up to 10% sions.

of lchan?ﬁls. S?_cond, tot_re_dutt:_e the cdorlnputationa| _COFYt1p|9Xité/ iln Briefly speaking, UVoD divides available channels into uni-
solving the nonlinear optimization model, an approximate mode . ;

is derﬁ/ed and solved Snder small-latency con%ri)tions to obtain a cast and multicast Chanlnels. The mu!tlcas_t chan.nels are then
closed-form solution. Third, a much simpler class-based popu- allocated equally to all videos. Each video is multicast repeat-
larity model is proposed and shown to achieve good efficiency, edly over the allocated multicast channels similar to a NVoD
even if the precise popularity of each video is not known. Lastly, system. In NVoD, the startup latency is substantially longer than
a zero-multicast channel-optimization algorithm is introduced T\/oD because an arriving user must wait until the next multi-
that can further reduce channel requirement for systems with . .

a large number of video selections. Numerical results show that CfiSt CyCI? starts. UVoD solves this problem by a||OC§.tIng a_tran-
optimized nonuniform channel-allocation policies can achieve SItOry unicast channel to the user to start playback immediately

channel reduction over uniform channel allocation by as much as While the client concurrently caches video data from a multi-

50% for a 1000-video system. cast channel. When the unicast stream catches up with the start
Index Terms—Channel allocation, NVoD, performance analysis, Of the cached multicast stream, the client can then be switched
TVoD, unified architecture, UVoD, video-on-demand. back to playback video data through the cache and releases the

unicast channel.

The study by Lee [13] employs a uniform channel-allocation
policy to divide multicast channels equally among all videos.
V IDEO-ON-DEMAND (VoD) systems have been commerThis policy simplifies system design and implementation but

cially available for many years. However, except for @an be suboptimal. Specifically, video popularity is highly
few cities, large-scale deployment of VoD service is still unskewed in practice [14], i.e., a small fraction of videos account
common. One of the reasons is the high cost in provisionifgy a |arge proportion of the traffic. Hence, allocating the same
|arge'.sca|e interactive VoD service. The trad|t}|0nal model (P;umber Of mu'ticast Channe's to both popu'ar and unpopu|ar
true-video-on-demand (TVoD) calls for a dedicated channgideos is intuitively suboptimal. For example, if a video is
both at the server and at the network, for each active user durgdg unpopular that no one ever requests it, then the allocated
the entire duration of the session (e.gw2Lh for movies). In a muylticast channels will be wasted.
city with potentially millions of s_ubscribers, the required infra- |, this study, we investigate this channel-allocation problem
structure investment would be immense. with the goal of optimizing system efficiency. The contributions

To tackle this problem, a number of researchers have starigghis study are as follows. First, we remove the uniform allo-
to investigate various innovative architectures in an attempt dgtion assumption in Lee [13] and show that the channel-alloca-
improve the scalability and efficiency of large-scale VoD sysjon problem can be formulated as a nonlinear integer optimiza-
tems [1]-{13]. Examples include the periodic broadcasting agon problem. This optimization model results in nonuniform
proach by Chiuekt al.[1], the batching approach by D&tal.  channel allocations that can save up to 10% channels. Second,
[2] and Shachnaet al.[3], the split and merge protocol by Liaotg reduce the computational complexity in solving the optimiza-
et al. [4], the stream tapping scheme by Caré¢ral. [S], the  tion model, we derive and solve an approximation model for

small-latency conditions to obtain a close-form solution. Third,
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Fig. 1. Architecture of the UVoD system. Request arrives, waits for next
multicast cycle.

up to 50% resource reduction compared to the original UVofig- 2. Admission procedure for an admit-via-multicast client.
architecture in [13].

The rest of paper is organized as follows. Section Il presen : :
an overview of the UMoD architecture; Section Il presents thMulticast:
formulation of the channel-allocation problem as a nonlinear ir ynicast: :
teger optimization problem; Section IV presents the small-le

»
»

.

tency approximation; Section V presents the class-based poj
larity model; Section VI presents the zero-multicast-channel o| » time
timization; Section VIl evaluates and compares various channe \—.

allocation policies using numerical results; and Section VII

concludes the paper. Releases unicast stream and continue

playback via cached multicast stream.

A unicast stream becomes available,
Il. UVoD ARCHITECTURE starts playback via unicast stream.

Request arrives, starts

In this section, we review the UVoD architecture and presel caching multicast stream.

its basic properties. The UVoD architecture as proposed by Lt
[13] is depicted in Fig. 1. There are a total@favailable chan-
nels, of whichNy of them are unicast channels and,; = Fig.3. Admission procedure for an admit-via-unicast client.

N — Ny of them are multicast channels. A channel is defined as

the unit for resource allocation and includes network bandwidthulticas) if the waiting time is smaller than a predetermined
as well as server bandwidth. Let there/Mevideos of lengthl.  admission threshold

seconds each. Under the uniform channel-allocation policy, the

Ny multicast channels will be divided equally among thase (tm — 1) < 6. 2

videos so that each video is multicast ovér; /M multicast . . . . .
Otherwise, the system will assign the user to wait for a free uni-

channels, assumindy,, is divisible by M. For each multicast tch | 1o start plavback (h forth ref tovi
channel, the assigned video is multicast repeatedly. Multic&&>" channetto start playbac ( encetortn re erreatiasit-via-
nicas). The admission threshold is introduced to reduce the

channels streaming the same video are offset by (in secondﬁ% _ . X
ad of the unicast channels, and to maintain a uniform latency

experienced by both admit-via-multicast and admit-via-unicast

Tp = _L (1) users.
[Na /M| For admit-via-multicast users, the operation is essentially the
same as in a NVoD system. The client just joins the upcoming

asiha NVOD. system. mlélticast channel attimg, , and then continues receiving video
The Ny unicast channels share a common request queue a? . L2
ream data from that multicast channel, as shown in Fig. 2.

serve incoming requests in a first-come-first-serve manner. i L . : : :
For admit-via-unicast users, the client first starts caching

coming requests will have to wait in the queue if Al; uni- . . . .
. : . . ideo data from the previous multicast of the requested video, as

cast channels are occupied. Finally, the video clients are capahle” ™ """ . : ; .

e . ; shown in Fig. 3. Then it waits for a free unicast channel to start
of receiving two video channels simultaneously and have Iocq . i
storage to cache up @ seconds of video data playback. For example, assume that the request arrives at time

’ t, and lett,,,_, andt,, be the nearest epoch times of multicast

channebn — 1 and channeln, for which¢,, 1 <t < (¢, —6).

Then at time, the client starts caching video data from channel
When a user requests a new video session, say attithe m — 1 into the client’s local storage. At the same time, the
system first checks the multicast channels for the next upcomiclgent enters the request queue and starts video playback using

multicast of the requested video. ligt be the time for the next unicast once a free unicast channel becomes available.
upcoming multicast. The system will assign the user to wait The admission process is not yet complete as the client still

for the upcoming multicast (henceforth referredaanit-via- occupies one unicast channel. Since the client concurrently

@ Start of a multicast cycle.

A. Admission Control
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caches multicasted video data for the video starting from videoBy differentiating (7) with respect t&,,, it can be shown
timet (¢t — t,,_1), the unicast channel can be released after{&3] that the optimal number of multicast channels that mini-
time (¢ — t,,—1) and the client can continue video playbacknizes the unicast channel load is given by
using the local cache. Sinée< (t — t,,,—1) < (Tr — ) < L,

we can see that the unicast channels are occupied for much LN

shorter duration when compared to TVoD. This reduction in Ny = <m> M
service time allows more requests to be served by the unicast

channels.

(8)

where(-) rounds the argument to the nearest integer.

B. Optimizing Uniform Channel Allocation

The uniform channel-allocation policy has one controllable ] ) ] ] )
parameter, nameliV,;—the number of channels allocated for In_th|s s_ectlon, we r_elax the uniform aIIo_catlon_a_ssumptlon
multicast. Allocating too few multicast channels, and the unica@d investigate nonuniform channel-allocation policies that can
channels will become overloaded due to the long service tifi§ther improve system efficiency. Specifically, given the re-
T [cf. (1)]. Allocating too many multicast channels, and therUest arrival rate, the desired mean waiting time we want to
will be too few unicast channels left for serving admit-via-unifind the minimum number of channels required, and the corre-

cast users. Therefore one needs to find a balancing point so fH@nding allocation vector (defined below) for the video titles.
the system performance (i.e., latency) is optimized. First, we assume that videos have an arbitrary popularity pro-

Lee [13] suggested that since the latency depends on the I§sPecified by{gili = 1, 2,..., M} whereg; is the prob-
at the unicast channels, one can minimize latency by simpﬁ?"'ty that a user request; vidéoWithout loss of gener_allty,
minimizing the load at the unicast channels. Specifically, té can assume that the videos are numbered according to de-

probability for an incoming user to be admitted via a unicaﬁfeasmg popularity, i.eg; > g;, Vi < j. Clearly, we must

I1l. N ONUNIFORM CHANNEL ALLOCATION

channel is given by ave
M
§ Z gi = L. C)
P,=1—-—. 3 ;
=1 ®3) =
Let ng be the number of unicast channels, ang,
Given an arrival rate ol users per second, users willarrive at = 1,2, ..., M be the number of multicast channels
the unicast channels with a reduced rate equal to allocated to videai. Then the set{n;}i = 0,1,..., M}
forms the channel-allocation vector. Consider vidgothe
N = \P @) corresponding traffic intensity going into the unicast channels
“ “ is given by
The service times of these users depend on the arrivalitime Agi S I
and the timet,,,_; for the previous multicast of the requested o —|1- — =6, ni>1
. . . . Uy = 2 L n; (10)
video. Sinced < (t — t—1) < (Tr — 6), the service time
)\giL, n;, = 0

s for requests entering the unicast-channel queue is uniformly

distributed between
where(1 — (én;/L)) is the proportion of requests routed to the

unicast channels, ar(d/2) ((L/n;) — ¢) is the average service
time. We can obtain the utilization of the unicast channels, de-
noted byp, from

Hence, the traffic intensity at the unicast channels can be com- v
uted from 1
p p= n_O Z Uj - (11)
i=1

(Tr — 6) ©)
2 Since lower utilization results in shorter queuing delay at the

. o . unicast channels, our goal is to find a channel-allocation vector
where(1,/2) ((L/”)_‘s) is the average service tme. Given ther(%,uch thap is minimized. This can be formulated as
are Ny multicast channels, the load at the unicast channels,

denoted by, is then given by

0<s<Tgr—6. (5)

u= AP,

1 M
minimizep = — i
= Z u
) i=1
M

u

Pu =N "Ny

subject to Zn - (12)
1=0

lvideo time is the time offset relative to the beginning of the video. n; >0, Vi=0,1,..., M
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which is a nonlinear integer optimization problem. This optiime can be computed from
mization model does not have simple closed-form solutions and,

therefore, numerical methods are needed to obtain solutions. E[s?] — (E[s])2
The previous optimization model still does not provide a di- s —(E[s])2
rect answer to our question posted at the beginning of the sec-
tion. In particular,N andé must be given in order to find the hereEls] — d
channel-allocation vector. Given a desired latenay df is easy whereE[s] =3, an
to see that = 2w, considering that the latency is half of the ad- o
mission threshold for admit-via-multicast users. Howedeis Bls?] = 1 Z Ao (20)
not knowna priori, and so we still need to perform an additional 1= — il
step: iteratively find the minimunV that can meet the serviceWhere =
specifications, namely arrival rafeand latencyt. \on2
To find the latency giverV, we model the unicast channels o ~t n; >0 21
. ni = 3 (21)
as aG /G /m queuing system and apply the Allen—Cunneen ap-
. . s L, n; = 0.
proximation [15] to compute the average wait (i.e., latency) ’
Eo(Nu, u) [C2 + C2 Now all input parameters for the Allen—Cunneen formula is
wy (6) ~ Z\f (1L’ ) ( A 5 5) Ts (13) known, we can proceed to compute the minimi¥mequired to
vll—0p

satisfy the latency constraint from

Ec(n(). /\ugu) 1+ C% _
- <
1n0(1 — AuSu/10) ( 3 )fuswy (22)

whereC4 and Cgs are the coefficient of variation (CoV) for

inter-arrival time and service time, respectively is the av- N — min {n
erage service timey is the traffic intensityp is the server uti-

lization as given in (11), anflc(Ny, w) is the Erlang€ func-

tion, as given by using conventional numerical methods. Ori¢ds known, the
complete channel-allocation vector can then be computed from
m o) the optimization model in (12).
Fe(m, u) = u™/m]! — (14 p (12)
wk
u™/m! + (1 —p) kzo W IV. SMALL -LATENCY APPROXIMATION

Using the previous optimization model, a system designer
Now we need to derive the input parameters for (13). Givesan perform system dimensioning and determine the channel-al-
a channel-allocation vector, we can compute the traffic parafgcation vector simultaneously. However, this optimization ap-
eters for each of the video. Specifically, the service time fgiroach is not without limitation. In particular, the optimization
an admit-via-unicast user requesting videis uniformly dis- problem in (12) must be solved using numerical methods and
tributed between 0 and L /n;) — 2w) for n; > 0. Forn; = 0, the computational complexity is relatively high. Worst, each it-
the service time is simply the video length. Hence, the mean sgfation in finding the minimundV in (22) requires solving (12),

vice time can be computed from thereby further multiplying the computation time.
As an illustration, using the numerical solver in MathCAD
1 <£ _ 2w> >0 Professional 20@1 on a Compaq Professional Workstation
5i=4q 2\n; o (15) AP550 with Dual Pentium Il 728-MHz processors, it takes
L, n; = 0. 13, 81, and 235 s to solve (12) witi¥ equal to 50, 100, and

150, respectively. Moreover, the MathCAD solver failed to
The arrival rate of admit-via-unicast users requesting video obtain solution forM = 200. We were able to overcome this
given by by installing the optional Solving and Optimization Extension
Sm Pack for MathCAD and obtained a solution faZ = 200 in
i = Agi <1 - ’L) _ (16) 660 s. Nonetheless, even the advanced solver failed to obtain
L solution for larger values oM tested (e.g.M = 300, 400,

As there aréV/ different videos, the combined traffic enteringtc.)-

the unicast channels will have the following parameters: While one can still obtain solutions for large using other
optimization tools or methods, the nature of the model (non-

M linear with integer solutions) suggests that the results obtained
arrival rate: Au = Z A (17) may only be a local optimum rather than a global optimum.
i=1 Moreover, the computational complexity and unpredictability
of the result will limit the optimization process to be manually

M
. . 1 .
mean service time: 5, = " E \iSi. (18) conducted offline.
u
1=1

2Information on MathCAD Professional 2001 can be found at
. .. . . http://Iwww.mathcad.com.
For simplicity, we assume that the combined traffic have A3information on the Solving and Optimization Extension Pack can be found

CoVofC4 =1 (i.e., same as Poisson). The CoV for the servicg http://www.mathcad.com/addons/soe_pack_ben.asp.
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To tackle this limitation, we present in this section an apgequations in {/ + 2) unknowns
proximate model for (12), where the closed-form solution for

the channel-allocation vector can be obtained. This approxim
model can be used in place of the nonlinear model in (12) to r¢- *
duce the computation time, or in combination with the nonline

model in (12) to ensure that a solution is available and it wil) n3 =
not be poorer than the approximated solution. Apart from thegde

g2 = il

practical uses, the small-latency approximation also providds m

important insight into the performance model. For example, th Z n; = N.
approximate model reveals that the optimal allocation alwa

, fori=1---M (30)
2nga
M
Z Agil (31)
c~ 2amn;
=1
(32)

=0

reserves half of the channels for multicast and the other half for

unicast, regardless of other system parameters.

Formally, the approximate modelis based onthe method of L
grange multiplier [16] under three assumptions: 1) the integer so-
lution can be obtained from a continuous approximation; 2) each
video is allocated with at least one multicast channel; and 3) the

To solve for the channel-allocation vectqr, we first use (30)
d (31) to solve fon

. 2/3
I\ 1/3 M
ng = (T) <lz_; \/a .

(33)

latency under consideration is small. The last assumption is mo-

tivated by the observation that VoD services in practice requikgw consider the total number of multicast channels
short response time in order to provide good quality of service,

thereby making the small-latency approximation applicable.
To derive the approximation model, we first form an auxiliary

(34)

gL\ /2
Z "= Z <2n0a> ’

function according to the method of Lagrange from the objective

function and the constraint function

M
F({n},a)=p+a (Z n; —N)

wherep is given in (11) andy is the Lagrange multiplier.

(23)

With the first and second assumptions, this function becomes

differentiable with respect to the function argumefitsn,;: : =

0,1, ..., M}. As the admission threshobdis equal to double
the latency, the admission threshold will be small given the thitd other words, under optimal allocation, the number of chan-

assumption. In particular, we assume that sufficiently small
compared ta/n;, such that

(%)

L L
<— +5) - —,

This enables us to simplify (23) to

(S5 v (pnen) e

and obtain the partial derivatives

(24)
and
(25)

F({ni}, a) =

( F . —

0 ({n,,},oz) )\912_'_0[7 fori=1---M 27)
on; 2non

OF ({ni}, @) _ =1 <= AgiL

OF ({ni}, o) -1 ! 2
o 2 2 o, +a (28)

OF ({ni}, o) _ <

G ;n (29)

Equating (27)—(29) to zero gives the following set &f ¢ 2)

Substituting (33) in place of, in (34) gives a surprising result

M N[\ "3 (M —2/3 AL\ /2
2e- () (5 % (8)

. ) 2/3
N\ Y3 (M

= (T) <Z Vai|  =mno.
i=1

(39)

nels assigned to multicast and unicast is alwayséme As we

have not assumed any particular values{fgr}, A, M, L, and

N, this result is true for all systems as longdas small.
Using this property, we can immediately obtaigfrom

Equating (36) with (33), we have
) 2/3
AL\ ? (& N
AL ; = 7
(%) (g Vi) =4 37)
which can be solved to obtaimn
M 2
ANL (Z @)
a= l]:V—lg (38)
Finally, substitutingro anda into (30) gives alln;’'s
giN?
n; = ' s fori=1.---M (39)

(£ va)

i=1

for the channel-allocation vector.
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V. CLASS-BASED POPULARITY MODEL Step 1: Given initial channel allocation vector {n,|i=0..H};
. L . . . target latency = w.
In developing the optimization model in Section Il and thi| step 2: ¢ = ¥/ H (i.e. number of videos per class)
: . . . Step 3: for i = {H,H-1,..,1}
approximate model in Section 1V, we have assumed that in( ¢ o0 4. |
vidual video popularitiegg;|¢ = 1, 2, ..., M} are known. | step 5:  if (n; == c) then
. . . . . 6:
In practice, a service provider can estimate the video popule §§§§ - { old.n, = n
ties by collecting the on-going user access statistics over a || step 8: n; =0
. . . . Step 9: for x = {1,2,..,c}
riod of time (e.g., several days) for computing and updating tl| ¢ .o 1. ¢
channel-allocation vector. Interested readers are referred to | step i; ny = 0 +11 o J20ut) s 3
. . . St : t tenc n.|7=0..H using Eq.
study by Griwodzt al.[17] for a more in-depth study of movie | ¢.p 15 2ty < then rredi g
popularity models. Step 14: }
. . . . .. | Step 15: if (w, > w) then

Nevertheless, when adding new video titles to an existit| gcop 16. P
system or when setting up a new system, prior access statis| step i; n; = old n,

. . . P . St : n, = n, -
will not be available and it would be difficult to estimate the rel| gccp 15, , T c
ative popularity of the new video titles. Step 20: )

. e g . . Step 21: }
To tackle this problem, we propose dividing videos inti

a smaller number of popularity classes. Each video is then _ S _
classified into one of the popularity classes. All videos in 59.4. Pseudocode for the zero-multicast-channel optimization algorithm.
popularity class are allocated the same number of multicast
channels. By decreasing the number of classes, we can simplifie is large, this assumption is valid (e.g., arrival rate of 0.5
the classification process as well as the system implementatiirstomers/s). However, for systems designed for small arrival
(e.g., disk and transmission scheduling). We will evaluate thgte, and in particular, with a large number of videos, this as-
performance tradeoff of this class-based popularity model $umption may lead to inefficient channel allocations. As an ex-
Section VII-C. ample, consider a system serving 100 videos with a latency con-
Let H be the number of popularity classes. THén= 1 rep- straint of one second and an arrival rate of 0.02 customers/s.
resents the uniform channel-allocation model as investigatedtiye channel requirement for UVoD with uniform channel al-
Lee[13]andd = M represents the individual popularity modelocation and nonuniform channel allocation are 193 and 203

as investigated in Sections llland IV. Let(z = 1, 2, ..., H) channels, respectively. However, TVoD under the same arrival
be the aggregate popularity for classlefined as rate requires only 174 channels. We present below a zero-mul-

ticast-channel optimization (ZMO) algorithm to tackle this de-

in.—1 ficiency under light traffic conditions.

¢ = Z g (40) ZMO is a post-processing procedure that attempts to adjust
j=(i—1)n. the computed channel-allocation vector to further reduce the

total channel requirement. The ZMO algorithm is shown in
and leta; (i = 1,2, ..., H) be the aggregate arrival rate forFi9- 4 in the form of pseudocode. The algorithm has two nested
classi, defined as loops. The outer loop (Step 3) iterates through elements in the

channel-allocation vector in reverse popularity order. For each
ina—1 video class where exactly one multicast channel is allocated to
a; = Z by (41) each video, the allocated multicast channels are first removed
(Step 8). This renders videos in this class to be served solely by
the unicast channels. Next, the inner loop (Step 9) computes the
o new latency of the system, and increases the number of unicast
wheren,. = M/H. As the number of classes is likely to be smally,anne|s until the latency constraint is satisfied (Step 13). If the

to be practical, we assume thiat is divisible by 7 to simplify ' atency constraint cannot be satisfied, even if all saved channels
notations. The model can be modified to cater for nondivisibles returned to the unicast pool, then the original multicast

cases by choosing explicit class boundaries. channels will be restored (Steps 15-19).

To in.corporate'this cla}ss—based popularity model into the op-This zMO algorithm can be generalized to armulticast-
timization model in Sections Il and IV, we only need to replacgnannel optimizations{MC) algorithm, which either allocates
individual video popularity with aggregate class popularity ify or more channels for each video or none is allocated. This is
(40), replace individual arrival rate with aggregate class arrivghey| in cases where the video client has limited storage for
rate in (41), and round the resultant channel-allocation vectorg}i-ching the multicast stream. In particular, one can adjust the
ements to integral multiples of class sizes. The rest of the deriy@annel-allocation vector to conform to the client storage spec-
tions will be the same. ification by settingn, such that

i=(i—1yn.

Tr =

VI. ZERO-MULTICAST-CHANNEL OPTIMIZATION L 42)
— 42
n

One of the assumptions in deriving the short-latency approx-
imation in Section 1V is that each video is allocated at least
one multicast channel. For systems where the expected arrigalvithin the client’s storage capacity.
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TABLE |
LIST OF SYSTEM PARAMETERS
Parameters Symbol Value
Total number of available channels Computed
Number of multicast channels Computed
Number of unicast channels Computed

Number of videos
Length of each video
Skewness for Zipf-distributed video popularity profile

10, 100,0r 1000
120 minutes
0.271 [14]

o~RZEx=

Mean Wait at Unicast Channels

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Arrival Rate (customers/second)
*>¢  Small-Latency Approximation
+++ Non-linear Optimization
---- Latency Constraint

Fig. 5. \Verification of the small-latency approximation model (latency consteaifits).

VII. PERFORMANCE EVALUATION To solve the nonlinear optimization model, we make use of

_ ) ) MathCAD'’s solver with initial guess values set according to
In this section, we present numerical results to evaluate the

channel-allocation algorithms studied in this paper. The system ng = N/2
parameters are summarized in Table I. {m _NJQH). i=1.2 . .. H (44)
A. Verification of the Small-Latency Approximation which is motivated by the observation that at small latency half

. . f the channels are allocated for unicast (cf. Section V) and the
First, we compare results computed from the nonlinear opti- :
o X . : -other half for multicast.
mization model in Section Il with the small-latency approxi- . -
To compare the channel-allocation policies, we compute the

mation model in Section IV. We set a target latency constrailntt . )
. atency using the channel-allocation vectors and plot the result
of 1 s and then compute the channel-allocation vector from

o . ~1n Fig. 5. Two sets of channel-allocation vectors\at 1 and
the small-latency approximation model for arrival rates ranging _ . . . )
= 5, respectively, are also listed in Table Il for comparison.
from 0.5 to 5 customers/s. Next, we use the total channel ré‘ g
LirementN obtained from learly, both models produce very close results, verifying the
q small-latency approximation model.
To check how the approximation performs at larger latency,
H we repeat the same procedure with a latency constraint of 60
N = Z i (43) s, The resultant latency is plotted in Fig. 6. We can see that in
=0 this case the approximation model produces channel-allocation
vectors with higher latency than the nonlinear optimization
whereH is the total number of popularity classes and} is model. Consequently, the minimum number of channels required
the computed channel-allocation vector, and repeat the chantelsatisfy the latency constraint of 60 s are also higher (see
allocation process using the nonlinear optimization model. Table IlI).
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TABLE I
COMPARISON OFCHANNEL ALLOCATION VECTORS

L] ny ny n3 Ny ns ne n ng hg nyo

NOM™ 580 120 70 60 50 50 50 40 40 40 40

SLA* 600 120 70 60 50 50 40 40 40 40 30

NOM 1237 270 160 140 120 110 100 100 90 90 80

SLA 1267 270 160 130 120 110 100 90 90 80 80
* NOM: Non-linear optimization mode; # SLA: Small-latency approximation model.

A=1

A=5

120 T T T T T T

80— -

Mean Wait at Unicast Channels

| ir } } L 1 L
0.5 1 1.5 2 25 3 3.5 4 4.5 5

Arrival Rate (customers/second)
¢ Small-Latency Approximation
+++ Non-linear Optimization
---- Latency Constraint

Fig. 6. Deviation of the small-latency approximation model under latency constraint of 60 s.

TABLE Il
COMPARISON OFCHANNEL REQUIREMENT UNDER LARGE-LATENCY CONDITION (60 S)
Arrival Rate: 0.5 1.0 1.5 2.0 2.5 3.0 35 4.0 4.5 5.0
NOM’ 732 998 1091 1347 1479 1594 1697 1791 1879 1955
SLA* 745 1010 1206 1368 1504 1627 1736 1830 1931 2009
Differences 13 12 15 21 25 33 39 39 55 54

* NOM: Non-linear optimization mode; # SLA: Small-latency approximation model.

B. Sensitivity to Arrival Rate drops significantly for arrival rates smaller than 0.28. In

To facilitate comparison of nonuniform and uniform channefP™Me cases (e.g) < 0.08), the reduction is in fact negative,

allocation algorithms, we define a normalized channel reductibff-» MOre channels are required by using nonlinear channel
factor allocation.

This poor performance at small arrival rate is a result of the
(45) requirement that each video is allocated at least one channel.
Nuca Applying the zero-multicast-channel optimization increases
where Nyca and Nxca are the channel requirements undethe channel reduction dramatically as evident in Fig. 9. In
the uniform and nonuniform channel-allocation policiegarticular, channel reduction for the 1000-video case increases
respectively. The valu&(R < 1) can be interpreted as theto 55% at\ = 0.08. Moreover, the reduction never drops
proportion of channels saved by the use of nonuniform changllow zero, even at extremely small arrival rates. This is
allocation. because at extremely small arrival rates, multicasting video
The results for light traffic range and heavy traffic range areffers no performance advantage and all the multicast channels
plotted in Figs. 7 and 8, respectively. We observe that chan@ée removed by the ZMO algorithm. The system in this case
reduction generally increases with more video selections, excépgenerates into a TVoD system and serves users using only
at very small arrival rates. For example, the 1000-video curugicast channels.

N - N
R — ucA NCA
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Fig. 7. Normalized channel reduction versus arrival under light traffic conditions.
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Fig. 8. Normalized channel reduction versus arrival under heavy traffic conditions.

C. Sensitivity to Video Popularity Model except for slight improvement in the 1000-videos case. By con-
trast, ZMO dramatically raises channel reduction at a lower ar-
Fig. 10 plots the normalized channel reduction versus videoal rate of A = 0.1, as shown in Fig. 11. These results demon-
popularity skewness ranging from 0.02 to 0.5. The result shostsate that the ZMO algorithm is most effective at medium traffic
that nonuniform channel allocation achieves better channel range with high popularity skewness.
duction for increased popularity skewness (note that skewnesd he previous results were computed by dividing the video se-
increases with decreasing valugdpfAt an arrival rate ok = 1, lections into ten popularity classes, which reflects the practical
as shown in Fig. 10, the performance gain of ZMO is negligiblejfficulty of knowing the exactvideo popularity. Toinvestigate the
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Fig. 10. Normalized channel reduction versus video popularity skewness at arrival ate.

performanceimpactofthis simplification, we compute and plot umiform channel allocation, nonuniform channel allocation, and
Fig.12the normalized channelreductionfor1, 2,5, 10, 25,50, andnuniform channel allocation with ZMO. There are two ob-
100popularity classes, respectively. Surprisingly, channel-redservations. First, the nonuniform channel-allocation algorithms
tion levels off for ten or more popularity classes. This rendewutperform uniform channel allocation except for very small ar-
exactknowledge ofthevideo popularity unnecessary and enharical rates, where they perform equally. Second, the ZMO algo-
the practicality of nonuniform channel allocation. rithm offers substantial improvement over a range of medium
. arrival rates. The exact range depends on the total number of

D. Channel Reduction Over TVoD videos (e.g.0.007 < A < 0.04 for 100 videos.07 < A < 0.4

Figs. 13 and 14 plot the channel reduction over TVoD versigr 1000 videos), but the improvements are consistent as evident
arrival rate, comparing the three channel-allocation algorithnis:Figs. 13 and 14.
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Fig. 12. Normalized channel reduction versus number of popularity classes.

VIII. CONCLUSION popularity skewness problem by allocating available channels
according to the video popularity. In practice, a system designer
In this study, we investigated the channel-allocation problecan start with the small-latency approximation model to perform
in a UMoD system with the goal of minimizing the channeinitial dimensioning, and then use the nonlinear optimization
requirement. While uniform channel allocation is simple tmodel for more accurate results. Provided that the video
implement, we show that the resultant resource requirement vgifllection can be separated into around ten popularity classes,
not be minimal as video popularity is highly skewed in practicewonuniform channel allocation can offer channel reduction
Nonuniform channel allocation provides a solution to thisy as much as 50% compared to uniform channel allocation.
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