
JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 19, 517-530 (2003)

517

Slice-and-Patch −−−− An Algorithm to Support VBR Video
Streaming in a Multicast-based Video-on-Demand System*

C. W. KONG AND JACK Y. B. LEE

Department of Information Engineering
The Chinese University of Hong Kong

Shatin, N.T., Hong Kong
E-mail: {cwkong1, yblee}@ie.cuhk.edu.hk

In recent years, a number of sophisticated architectures have been proposed to pro-
vide video-on-demand (VoD) service using multicast transmissions. Compared with
their unicast counterparts, these multicast VoD systems are highly scalable and can po-
tentially serve millions of concurrent users. Nevertheless, these systems are designed for
streaming constant-bit-rate (CBR) encoded videos and thus cannot benefit from the im-
proved visual quality obtainable from variable-bit-rate (VBR) encoding techniques. To
tackle this problem, this paper presents a novel Slice-and-Patch (S&P) algorithm to sup-
port VBR video streaming in a multicast VoD system. Extensive trace-driven simula-
tions were conducted to compare the performance of the S&P algorithm with two other
algorithms based on priority scheduling. Results show that the S&P algorithm outper-
forms the other two priority scheduling algorithms for most videos. Compared with the
CBR counterpart serving videos of the same average bitrate, the S&P algorithm is able to
support VBR video streaming with an increase in latency of only 50%. Given that
VBR-encoded video can achieve visual quality comparable to that of CBR-encoded
video at half the bitrate, this S&P algorithm can potentially achieve performance com-
parable to that of CBR-based systems when combined with VBR encoding techniques.

Keywords: multicast, VBR, video-on-demand, streaming, slice-and-patch

1. INTRODUCTION

In a true-video-on-demand (TVoD) system, the video server has to reserve a dedi-
cated video channel for each user for the duration of the session (e.g., two hours for a
movie). Consequently, the server and network resources required increase linearly with
the number of concurrent users to be supported. Although current PC servers are already
very powerful and capable of serving hundreds of concurrent video streams, scaling up a
system to thousands and even millions of concurrent video streams is still prohibitively
expensive.

One promising solution to this scalability problem is to employ intelligent use of
network multicast. Network multicast enables a server to send several streams of video
data for reception by a large number of clients, thereby significantly reducing the amount
of resources required. A number of pioneering studies have investigated such architec-
tures, such as batching [1-3], patching [4-7], and periodic broadcasting [8-11].

Received May 15, 2002; accepted July 25, 2002.
Communicated by Biing-Feng Wang, Stephan Olariu and Gen-Huey Chen.
* A preliminary version of the paper was presented at the 2002 International Conference on Parallel and

Distributed Systems, Chungli, Taiwan.

C. W. KONG AND JACK Y. B. LEE518

A common assumption among these multicast VoD architectures is that the videos
are constant-bit-rate (CBR) encoded. This significantly simplifies system design and
analysis, and enables one to study the system performance independent of video encod-
ing variations. Nevertheless, the visual quality of CBR video is not constant and tends to
vary according to the video content. For example, complex video scenes with a lot of
motion will typically result in lower visual quality than simple video scenes with little
movement.

In contrast, videos encoded with constant-quality encoding algorithms have consis-
tent visual quality, at the expense of bitrate variation. A study by Tan et al. [12] showed
that VBR-encoded video can achieve visual quality similar to that of CBR-encoded video
at only half the bitrate. This result suggests that VBR encoding has potential for provid-
ing high-quality VoD services. The challenges are the complex resource allocation and
the scheduling problems resulting from the video bitrate variation.

This study addresses these challenges and presents a slice-and-patch (S&P) algo-
rithm for allocating resources and scheduling video data transmissions in a multicast
VoD system proposed by Lee and Lee [13]. The original multicast VoD system is de-
signed for CBR videos, and combines techniques from batching, patching, and periodic
broadcasting. This multicast VoD system can be scaled up to an unlimited number of
concurrent users and thus is most suitable for serving popular movies in a metropoli-
tan-scale VoD service. We give a brief overview of this VoD architecture in section 3
and refer interested readers to Lee and Lee [13] for details.

The S&P algorithm is designed based on two principles. First, video data corre-
sponding to video bitrate peaks are prefetched at startup. This step reduces the worst-case
peak rate of the video stream and thus allows more efficient resource allocation. Second,
the video stream, minus the previously-mentioned peaks, is sliced into two sub-streams
of lower bitrates and multicast periodically in two static multicast channels. A client,
after prefetching the peaks, initiates patching to begin playback using a dynamically al-
located video channel while at the same time caching video data from the static multicast
channels. Eventually, video playback reaches the point where video data are already
cached and the client can then release the dynamic channel and continue video playback
using data received from the multicast channels.

We conducted simulations to study and compare the S&P algorithm with two other
algorithms based on priority scheduling. Our simulation results show that the S&P algo-
rithm outperforms the priority scheduling algorithms for most of the 50 tested videos.
Compared with the CBR version of the system, the S&P algorithm can serve VBR videos
of the same average bitrate with an average latency increase of only 50%. As
VBR-encoded video needs only half the bitrate to achieve the same quality as
CBR-encoded video, this S&P algorithm can potentially support VBR video streaming
with resources comparable to those of CBR-based VoD systems.

The rest of the paper is organized as follows. Section 2 reviews some related works
and compares them with this study; section 3 reviews the multicast VoD architecture;
section 4 presents the two priority scheduling algorithms; section 5 presents the
Slice-and-Patch algorithm; section 6 evaluates and compares the three algorithms using
simulation results; and section 7 concludes the paper.

MULTICAST VBR VIDEO STREAMING WITH SLICE-AND-PATCH 519

2. BACKGROUND

The problem of VBR video delivery in unicast VoD systems has been studied ex-
tensively. We review some of the more relevant previous works in section 2.1 and com-
pare them with this study in section 2.2.

2.1 Previous Work

One of the most well-known solutions for VBR video delivery is temporal smooth-
ing [14-17]. Smoothing makes use of a client-side buffer to receive data in advance of
playback. This work-ahead technique enables the server to transmit video data in a
piecewise linear schedule that can be optimized to minimize rate variability [15] or to
minimize the number of rate changes [16]. The schedule can be computed offline and
with proper resource reservation, deterministic performance can be guaranteed. Inter-
ested readers are referred to Feng et al. [17] for a thorough comparison of various
smoothing algorithms.

In another study by Lee and Yeom [18], a data prefetch technique was proposed to
improve video server performance in serving VBR videos. Unlike smoothing, where all
the video data are retrieved from the disk in sequence, data prefetching preloads video
data corresponding to a video’s bitrate peaks into the server’s memory during system
initialization. During operation, the server only needs to retrieve the remaining video
data from the disk and combine it with the prefetched data for transmission to clients. As
the remaining video stream has a lower peak bitrate, disk utilization is increased. Their
simulation results show that up to 81% more streams can be served using this prefetch
technique. The tradeoffs are increased server buffer requirement and additional offline
preprocessing of the video data.

A third approach proposed by Saparilla et al. [8] schedules video data transmission
using a priority scheduler (Join-the-Shortest Queue). In particular, the server schedules
video data transmission according to the demand for data of each channel. A channel
with the greatest demand for data (the clients listening to this channel are most likely to
run out of data) will have the highest priority in the next round of transmission. However,
while server efficiency is improved, this priority scheduler does not guarantee that a cli-
ent can receive all the data in time. In particular, a channel will simply be skipped (i.e.,
not transmitted) if the data cannot be transmitted in time for playback. Their simulation
results show that with their Join-the-Shortest Queue priority scheduling, when the client
is allowed to retrieve data from seven channels synchronously, the start-up latency can
be limited to around 100 seconds with a loss probability of 10-6.

2.2 Comparison

Compared to the S&P algorithm investigated in this study, both temporal smoothing
and the data prefetch techniques discussed above are orthogonal and complementary.
With temporal smoothing, a smoothed VBR video stream can be considered as just an-
other VBR video stream, albeit one requiring additional client buffer for proper playback.
With the data prefetch technique, the focus is on improving disk retrieval efficiency by
intelligently preloading some video data into the server memory. Obviously, this tech-

C. W. KONG AND JACK Y. B. LEE520

nique does not affect the transmission schedule at all and thus can be integrated with any
transmission scheduling algorithms including S&P.

S&P differs from the work by Saparilla et al. [8] in two major ways. First, the S&P
algorithm guarantees that no video data will be skipped, thus ensuring visual quality.
Second, S&P is targeted at clients with limited access bandwidth (twice the average bit
rate of the video). In contrast, the algorithm proposed by Saparilla et al. assumes that the
client has sufficient bandwidth to receive data from many channels simultaneously,
which currently may not be practical.

This study is a first step in exploring algorithms for supporting VBR video delivery
in multicast VoD systems. Designing the S&P algorithm has revealed many difficulties
and challenges that are not present in conventional unicast VoD systems. Nevertheless,
this will be an important area as VBR encoding is necessary to provide good visual qual-
ity. In addition, multicast VoD systems may be the only way to deploy cost-effective
metropolitan-scale VoD services in the near future.

3. SYSTEM ARCHITECTURE

In this section, we give a brief overview of the multicast VoD architecture, su-
per-scalar VoD (SS-VoD), investigated in this paper. The system consists of a number of
service nodes delivering video data over multicast channels to clients. SS-VoD achieves
scalability and bandwidth efficiency by sending video data to a large number of clients
using a few multicast channels. However, simple periodic multicast schemes, such as
those used in a near-video-on-demand (NVoD) system, limit the time when a client may
start a new video session. Depending on the number of multicast channels allocated for a
video title, this startup delay can range from a few minutes to tens of minutes. To tackle
this initial delay problem, SS-VoD employs patching to enable a client to start video
playback at any time using a dynamic multicast channel until it can be merged back onto
an existing multicast channel. The following sections present these techniques in more
detail.

3.1 Transmission Scheduling

Each service node in the system streams video data into multiple multicast channels.
Let M be the number of video titles served by each service node, and let N be the total
number of multicast channels available to a service node. For simplicity, we assume that
N is divisible by M, and hence each video title is served by the same number of multicast
channels, denoted by NM = N/M. These multicast channels are then divided into two
groups of NS static multicast channels and ND = NM − NS dynamic multicast channels. The
video title is multicast repeatedly over all NS static multicast channels in a time-staggered
manner as shown in Fig. 1. Specifically, adjacent channels are offset by

TR = L / NS (1)

seconds, where L is the length of the video in seconds. Transmissions are repeated con-
tinuously, i.e., restarted from the beginning of a video title every time transmission is

MULTICAST VBR VIDEO STREAMING WITH SLICE-AND-PATCH 521

time

tm

. . .

Static Ch n:

Static Ch n+1:

Dynamic Ch:

Client Playback:

Buffered Data:

tm+1t0

L

Tr

2δ

. . .

t1

BA

A

A B

A
B time

tm

. . .

Static Ch n:

Static Ch n+1:

Dynamic Ch:

Client Playback:

Buffered Data:

tm+1t0

L

Tr

2δ

. . .

t1

BA

A

A B

A
B

Fig. 1. The patching process in the super-scalar video-on-demand system supporting CBR video.

completed, regardless of the load on the server or how many users are active. These static
multicast channels are used as the main channels for delivering video data to clients. A
client may start out with a dynamic multicast channel, but it will shortly be merged back
into one of these static multicast channels as explained in the next section.

3.2 Admission Control

To reduce the response time while still leveraging the bandwidth efficiency of mul-
ticast, SS-VoD allocates a portion of the multicast channels and schedules them dynami-
cally according to the request arrival pattern. A new user either waits for the next up-
coming multicast transmission from a static multicast channel or starts playback with a
dynamic multicast channel.

Suppose a new request arrives at time t0, which is between the start time of the pre-
vious multicast cycle, denoted by tm, and the start time of the next multicast cycle, de-
noted by tm+1 (see Fig. 1). The new request will be assigned to wait for the next multicast
cycle to start playback if the waiting time, denoted by wi, is equal to or smaller than a
predefined admission threshold 2δ, i.e., wi = tm+1 − t0 ≤ 2δ. We say that these requests are
statically admitted. This admission threshold is introduced to reduce the load on the dy-
namic multicast channels.

On the other hand, if the waiting time is longer than the threshold, then the client
will request a dynamic multicast channel to begin playback (dynamically admitted) while
at the same time caching video data from the multicast channel with the multicast cycle
started at time tm. Note that the client may need to queue up and wait for a dynamic mul-
ticast channel to become available. If additional clients requesting the same video arrive
during the waiting period, they will be batched together and served by the same dynamic
multicast channel once it becomes available. Eventually, the client playback will reach
the point where the cached data began, and the client will then release the dynamic mul-
ticast channel and continue playback using data received from the static multicast chan-
nel. This integration of batching with patching significantly increases the system’s effi-
ciency under heavy loads.

C. W. KONG AND JACK Y. B. LEE522

Compared with TVoD systems, a SS-VoD client must have the ability to receive
two multicast channels concurrently and have a local buffer that can hold up to TR sec-
onds of video data. Given a video bitrate of 3Mbps (e.g., high-quality MPEG-4 video), a
total downstream bandwidth of 6Mbps is required during the initial patching phase of the
video session. For a two-hour movie served using 25 static multicast channels, the buffer
requirement is 108MB. This can easily be accommodated today using a small harddisk in
the client, and in the near future by simply using memory as technology improves.

3.3 Challenges in Supporting VBR-encoded Video

The SS-VoD architecture was originally designed for CBR videos. A problem arises
if we want to support VBR videos. Specifically, even if a client has the ability to receive
twice the video bitrate, this may not be sufficient to support two channels of VBR video
of the same average bitrate due to bitrate variation. Temporal smoothing can be used to
alleviate this problem but cannot solve it completely without adding excessive start-up
delay time. We investigate in the next section two possible solutions to this problem
based on priority scheduling.

4. PRIORITY SCHEDULING

The primary problem with supporting VBR video in SS-VoD is that dynami-
cally-admitted clients may not have sufficient access bandwidth to accommodate both
the dynamic and the static multicast channel. For example, let RV be the average video
bitrate; then, the client has an access bandwidth of 2RV. However, a VBR video of aver-
age bitrate RV will likely have bitrate peaks (valleys) higher (lower) than RV even after
smoothing is applied. It is easy to see that the access channel will become congested
whenever peaks from both the dynamic channel and static channel overlap.

Assuming that the client access bandwidth is limited, we need to prioritize the
transmission and reception of video data to stay within the given access bandwidth. The
following sections present two such priority-scheduling algorithms.

4.1 Static Channel Priority

In the static channel priority algorithm, we let the static channels transmit at the
original video bitrate and adjust the transmission rate of the dynamic channel to keep it
within the access bandwidth limit. Let v(t) be the video data consumption rate function
that defines the rate at which video data are being consumed t seconds after playback has
begun. Assume that the client arrives at time t0, and that the immediate previous multi-
cast cycle begins at time tm; then, the client will cache video data starting from a play-
back point of tc = t0 − tm, and the amount of access bandwidth left for the dynamic chan-
nel at time t will be equal to u(t) = 2RV − v(t − tm) for t ≥ t0.

As the client will not yet have any video data from a playback point earlier than tc, a
dynamic channel will be allocated to begin streaming data from the beginning of the
video to the playback point tc. If the bandwidth available to the dynamic channel is suffi-
cient to stream the video, i.e., u(t) ≥ v(t − t0 − w) for (t0 + w) ≤ t ≤ (t0 + w + tc),

MULTICAST VBR VIDEO STREAMING WITH SLICE-AND-PATCH 523

() () ()
0 0

0 0 0() , for c

t w t w

u t dt v t t w dt t w t w t
τ τ

τ
+ +

≥ − − + ≤ + +∫ ∫ , (2)

where w is the waiting time for the dynamic channel, then no further action needs to be
taken. Otherwise, the client will not be able to begin playback immediately when data are
received because playback continuity cannot be sustained when the condition in (2) fails.

To tackle this problem, the client will have to delay the playback by ts seconds so
that the continuity condition will be satisfied:

() () ()
0 0

0 0 0() , for
s

s s c

t w t w t

u t dt v t t w t dt t w t t w t
τ τ

τ
+ + +

≥ − − − + + ≤ + +∫ ∫ . (3)

This is also the tradeoff for this algorithm.

4.2 Dynamic Channel Priority

To avoid the startup delay in the previous static channel priority algorithm, we can
give priority to the dynamic channel during admission. Unlike the previous algorithm,
we cannot simply transmit video data of the static channel using the left-over access
bandwidth because the static channels are periodically multicast in a fixed schedule to a
large number of clients. Therefore, once a dynamic channel becomes available, the server
will transmit video data from the beginning of the video at the maximum rate 2RV until it
catches up with the playback point, say s, currently being multicast by the static channel.
At that instant, the client will then be able to release the dynamic channel and continue
receiving data from the static channel for the rest of the session.

Similarly, we again invoke the playback continuity condition to find the value of s
that satisfies the following condition:

() () ()0 0

0

2 , where
s

VR s t w v t dt s t w− − = ≥ +∫ . (4)

This algorithm does not incur a start-up delay, but a dynamic channel will consume
more resources than that in the static priority algorithm for two reasons. First, the dy-
namic channel itself will be streamed at the maximum access bitrate. Second, the client
will not be able to cache video data from the static channel while the dynamic channel is
streaming. This will increase the time the dynamic channel takes to catch up with the
static channel. Both factors will increase the dynamic channel’s bandwidth consumption
and result in a longer amount of time spent waiting for an available dynamic channel.

5. SLICE-AND-PATCH

The two algorithms presented in the previous section both have tradeoffs. In this
section, we present a slice-and-patch (S&P) algorithm that combines the virtues of the
static channel priority and the dynamic channel priority algorithms. In S&P, we divide
the video stream into three portions (i.e., slicing) and admit clients using a three-phase
patching process (i.e., patching). The following sections present the algorithm in detail.

C. W. KONG AND JACK Y. B. LEE524

Video Playback Time

C3

A1
A2 A3

A4

Rmax

Rcut

Rmax-Rcut

Bit Rate

Slice B

Slice C

Slice A

TA Video Playback Time

C3

A1
A2 A3

A4

Rmax

Rcut

Rmax-Rcut

Bit Rate

Slice B

Slice C

Slice A

TA

Fig. 2. Video slicing in the Slice-and-Patch algorithm.

5.1 Video Slicing

Video slicing is an offline process that divides a video data stream into three parts
(i.e., slices) for transmission in three separate multicast channels. As shown in Fig. 2, the
video data stream is sliced at two bitrates: Rcut and Rmax − Rcut. The parameter Rcut is con-
figurable from RV to (2/3)Rmax and can be optimized for a particular video.

To generate the first part, Slice A, we collect all the video data exceeding the bitrate
Rcut (e.g., A1, A2, etc., shown in Fig. 2), starting from the beginning of the video and con-
tinuing up to the playback point TA given by

max

max
A R

cut

R
T T

R R

 
=  − 

, (5)

where Rmax is the maximum access bandwidth of the client, and TR is the repeating inter-
val for the static multicast channels. We will derive TA in section 5.3 when we explain
the three-phase patching process. The purpose of this slicing step is to reduce the peak
rate of the video stream to prevent congesting the client’s access channel during patching.
The resultant slice will be repeatedly multicast over a dedicated channel at a constant
bitrate Rmax as shown in Fig. 3. Assume that the size of the block is A Mb; then, the slice
will be multicast repeatedly once every tda = A/Rmax seconds.

The second part, Slice B shown in Fig. 2, has two parts. The first part, covering the
first TA seconds of the video, contains the remaining video data that exceed the bitrate
(Rmax − Rcut). The second part, extending from playback point TA to the end of the video,
contains all the video data that exceed the bitrate (Rmax − Rcut). This slice will be multi-
cast repeatedly over a separate multicast channel following the actual video data rate (as
opposed to the constant transmission rate for Slice A).

Lastly, the third part, Slice C shown in Fig. 2, contains the rest of the video data.
This slice will be multicast repeatedly over a separate multicast channel following the
actual video data rate, which will not exceed (Rmax − Rcut).

MULTICAST VBR VIDEO STREAMING WITH SLICE-AND-PATCH 525

B

Rmax

AAAAAAAA …
Time

Bit Rate

2Rcut –Rmax

TA

Bit Rate

Time

C
Rmax–Rcut

Time

Bit Rate

B

Rmax

AAAAAAAA …
Time

Bit Rate

2Rcut –Rmax

TA

Bit Rate

Time

CC
Rmax–Rcut

Time

Bit Rate

Fig. 3. The three types of multicast channels in the Slice-and-Patch algorithm.

5.2 Bandwidth Allocation

Let Bmax be the total server (or network, whichever is smaller) bandwidth available
for a video of average bitrate RV bps and length L in seconds. First, a bandwidth of Rmax

will be allocated for multicasting Slice A. Then, the remaining bandwidth will be equally
divided between the dynamic multicast channels and static multicast channels. Simula-
tion results have shown that this equal allocation scheme always results in the best
performance.

There are two types of static multicast channels, one type for transmitting Slice B
and the other for transmitting Slice C. As the numbers of these channels are equal, we
will refer to a pair of such channels as a static multicast channel. Unlike the case of CBR
videos, a static multicast channel in S&P does not occupy a fixed bandwidth. Therefore,
offline numerical procedures are needed to compute the maximum number of static mul-
ticast channels that can fit within the bandwidth (Bmax − Rmax)/2. The remaining band-
width will be used by the dynamic channels.

5.3 Three-Phase Patching

A new client goes through a three-phase patching process to begin a new video
streaming session. Let the client arrive at time t0. It immediately enters Phase 1 by cach-
ing Slice A at the maximum rate Rmax for a duration of tda seconds (see Fig. 4). Next, the
client requests a dynamic channel to begin Phase 2. Once a dynamic channel becomes
available at time t1, the client begins receiving and playing back video data blocks {B1,
C1} while simultaneously caching block C2 into a local buffer. Note that the length of the
blocks {B1, C1} is equal to t1 − tm seconds, and that this is also the duration of Phase 2.

At the beginning of Phase 3, the client has cached block C2 and completed playback
of blocks {B1, C1}. As Fig. 4 shows, to continue playback, the client needs block B2. This
is supplied by the dynamic channel at a bitrate of Rmax − Rcut, as the static channel trans-
mitting blocks {B3, C3} occupies the remaining bandwidth of Rcut.

C. W. KONG AND JACK Y. B. LEE526

B3B3

C3C3C3

C3

t0

A

Slice B

Slice C

Client Playback

Dynamic Channel

Slice A

tm t1

B1

B2

B1 B3B2B1 B3B2

Received Data

2t1–tm

C1

C1 C2

B1 B3B3B3B2

B1

C1 C3C2C1 C3C3C3C2

C2

C1 B2

AA

Rmax

Rcut

Rmax – Rcut

Phase 1 Phase 2 Phase 3

Fig. 4. The three-phase patching process in the Slice-and-Patch algorithm.

Since the size of block B2 is equal to (2Rcut − Rmax)(t1 − tm), the time it takes to
transmit this block at a rate of Rmax − Rcut is equal to (2Rcut − Rmax)(t1 − tm)/(Rmax − Rcut).
To derive the duration of Phase 3, we note that (t1−tm) must be smaller than TR and thus
the duration will be bounded by (2Rcut − Rmax)TR/(Rmax − Rcut). So, the maximum duration
of all the three phases will be bounded by (2Rcut − Rmax)TR/(Rmax − Rcut) + TR. Since the
first phase starts at (Tr − tm) the latest, Phase 3 will end no later than (2Rcut −
Rmax)TR/(Rmax − Rcut) + TR + TR which equals to TA in (5) after simplification. After Phase
3 is completed, the client releases the dynamic channel and continues playback using
data received from the static channel for the rest of the video session.

6. PERFORMANCE EVALUATION

In this section, we evaluate the three algorithms presented in section 4 and section 5
based on the results of simulations. The simulator was developed using the CNCL simu-
lation library [19], and the simulations were conducted using 50 VBR video bitrate traces
from DVD videos. To facilitate comparison, we scaled the video bitrate traces so that all
videos had the same average bitrate of 3Mbps. The server was configured with a total
bandwidth of 150Mbps, and the client had an access bandwidth of 6Mbps. Each simula-
tion run simulated a duration of 30 days, with the first day of data skipped to reduce the
initial condition effects. The client arrival rate was 1 request per second.

MULTICAST VBR VIDEO STREAMING WITH SLICE-AND-PATCH 527

0%

100%

200%

300%

400%

500%

600%

700%

800%

900%

1000%

1 6 11 16 21 26 31 36 41 46
Movie Number

%
In

cr
ea

se

Slice and Patch Algorithm

Dynamic Channel Priority

Static Channel Priority

Fig. 5. Percentage of latency increases over the CBR-based system for 50 different videos.

For the S&P algorithm, we set the parameter Rcut to be equal to 1.1Rt, where Rt is the
average bitrate of the first 2TR seconds of the video. Clearly this may not be optimal, and
we are investigating an efficient way to find the optimal Rcut value without conducting a
huge number of simulation runs.

Fig. 5 plots the simulation results for the three algorithms for 50 different videos.
The vertical axis is the percentage increase in latency compared with the same system
serving CBR video of the same length and average bitrate (i.e., 3Mbps). Thus, this shows
the cost of supporting VBR-encoded video instead of CBR-encoded video although
VBR-encoded video will have better visual quality [12].

Several observations can be made based on the simulation results. First, in terms of
the average latency increase computed based on all 50 videos, S&P performs best at 50%,
Dynamic Channel Priority is second best at 120%, and Static Channel Priority is worst at
550%. Second, in terms of variation in the latency increase, Dynamic Channel Priority is
best with a consistent latency increase across all 50 videos (the standard deviation is only
14%). S&P has more variation at a standard deviation of 40%. Static Channel Priority is
the worst one with a huge standard deviation of 865% and a maximum latency increase
of over 2,000%. The higher variation for Static Channel Priority is due to variation in the
bitrate of the video’s initial portion. In particular, the algorithm allocates more bandwidth
to cache static channel video data that cannot be immediately played back. Therefore, if
the initial video portion has a high bitrate, then the dynamic channel will take more time
to cache sufficient video data to begin playback. In contrast, the Dynamic Channel Prior-
ity and S&P algorithms are less sensitive to this effect because both algorithms allocate
more bandwidth to caching video data that can be played back immediately.

C. W. KONG AND JACK Y. B. LEE528

Comparing the three algorithms, the S&P algorithm clearly performed best except
for a few videos. Although on average, latency still increased by 50%, this did not ac-
count for the improved visual quality due to the use of VBR encoding techniques. Given
that VBR-encoded video can achieve visual quality comparable to that of CBR-encoded
video at twice the video bitrate, this S&P algorithm can potentially achieve a level of
performance comparable to that of CBR-based systems with the proper choices of VBR
encoding parameters.

The simulation results were obtained by simulating each video individually. In a
real system with multiple videos, one can further improve system efficiency by allocating
channels according to the video’s popularity. Further investigations are needed to quan-
tify the potential performance gains and also tradeoffs in applying non-uniform channel
allocation policies.

7. CONCLUSIONS

This paper has investigated a multicast VoD system supporting streaming of
VBR-encoded video. Unlike unicast-based VoD systems, existing algorithms, such as
temporal smoothing, do not cater for the characteristics of multicast VoD systems, such
as the use of periodic multicast and the limitation of the client access bandwidth. There-
fore, new streaming algorithms are needed, and three such algorithms, namely, Static
Channel Priority, Dynamic Channel Priority, and Slice-and-Patch, have been studied in
this paper. In simulations, we found that the Slice-and-Patch algorithm generally outper-
formed the other two except for a few videos. We suspect that the exceptions were due to
non-optimal configuration of the Rcut parameter in S&P. We are currently running addi-
tional simulations to further investigate this issue. Nevertheless, with a modest 50% la-
tency increase over the case with CBR-encoded video, this S&P algorithm has very good
potential to achieve a level of performance comparable to that of CBR systems with
similar resources.

ACKNOWLEDGEMENTS

This research was funded by a Direct Grant, an Earmarked Grant (CUHK 4328/ 02E)
from the HKSAR Research Grant Council, and AoE-IT, a research grant from the
HKSAR University Grants Council.

REFERENCES

1. A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling policies for an on-demand
video server with batching,” in Proceedings of 2nd ACM Multimedia, 1994, pp.
15-23.

2. H. Shachnai and P. S. Yu, “Exploring waiting tolerance in effective batching for
video-on-demand scheduling,” in Proceedings of 8th Israeli Conference on Computer
Systems and Software Engineering, 1997, pp. 67-76.

3. V. O. K. Li, W. Liao, X. Qui, and E. W. M. Wong, “Performance model of

MULTICAST VBR VIDEO STREAMING WITH SLICE-AND-PATCH 529

interactive video-on-demand systems,” IEEE JSAC, Vol. 14, 1996, pp. 1099-1109.
4. W. Liao and V. O. K. Li, “The split and merge protocol for interactive

video-on-demand,” IEEE Multimedia, Vol. 4, 1997, pp. 51-62.
5. K. A. Hua, Y. Cai, and S. Sheu, “Patching: A multicast technique for true

video-on-demand services,” in Proceedings of 6th International Conference on
Multimedia, 1998, pp. 191-200.

6. Y. Cai, K. Hua, and K. Vu, “Optimizing patching performance,” in Proceedings of
SPIE/ACM Conference on Multimedia Computing and Networking, 1999, pp.
204-215.

7. S. W. Carter, D. D. E. Long, K. Makki, L. M. Ni, M. Singhal, and N. Pissinou,
“Improving video-on-demand server efficiency through stream tapping,” in
Proceedings of 6th International Conference on Computer Communications and
Networks, 1997, pp. 200-207.

8. D. Saparilla, K. W. Ross, and M. Reisslein, “Periodic broadcasting with
VBR-encoded video” in Proceedings of IEEE Infocom 1999, 1999, pp. 464-471.

9. S. Sen, Gao Lixin, and D. Towsley, “Frame-based periodic broadcast and
fundamental resource tradeoffs,” IEEE International Conference on Performance,
Computing, and Communications, 2001, pp. 77-83.

10. T. C. Chiueh and C. H. Lu, “A periodic broadcasting approach to video-on-demand
service,” in Proceedings of SPIE, 1996, pp. 162-169.

11. A. Hu, I. Nikolaidis, and P. van Beek, “On the design of efficient video-on-demand
broadcast schedules,” in Proceedings of 7th International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunication Systems, 1999, pp.
262-269.

12. W. S. Tan, N. Duong, and J. Princen, “A comparison study of variable-bit-rate
versus fixed-bit-rate video transmission,” in Proceedings of Australian Broadband
Switching and Services Symposium, 1991, pp. 134-141.

13. J. Y. B. Lee and C. H. Lee, “Design, performance analysis, and implementation of a
super-scalar video-on-demand system,” to appear in IEEE Transactions on Circuits
and Systems for Video Technology.

14. W. Feng and S. Sechrest, “Smoothing and buffering for the delivery of pre-recorded
video,” in Proceedings of ISET/SPIE Multimedia Computing and Networking, 1995,
pp. 234-244.

15. J. D. Salehi, Z. L. Zhang, J. F. Kuros, and D. Towsley, “Supporting stored video:
reducing rate variability and end-to-end resource requirements through optimal
smoothing,” in Proceedings of ACM SIGMETERICS, 1996, pp. 222-231.

16. W. Feng, F. Jahanian, and S. Sechrest, “Optimal buffering for the delivery of com-
pressed pre-recorded video,” in Proceedings of the IASTED/ISMM International
Conference on Networks, 1995.

17. W. Feng, Mishra, and Ramakishnan, “A comparison of bandwidth smoothing
techniques for the transmission of pre-recorded compressed video,” in Proceedings
of INFOCOM ’97, Vol. 1, 1997, pp. 58-66.

18. D. Y. Lee and H. Y. Yeom, “Tip prefetching: Dealing with the bit rate variability of
video streams,” in Proceedings of the IEEE International Conference on Multimedia
Computing and Systems 1999, Vol. II, 1999, pp. 352-356.

19. ComNets Class Library and Tools: http://www.comnets.rwth-aachen.de/doc/cncl.html

C. W. KONG AND JACK Y. B. LEE530

Chun-Wai Kong received the B.Eng. degree in Informa-
tion Engineering from the Chinese University of Hong Kong in
2000. He is currently a M.Phil candidate in the Department of
Information Engineering at the Chinese University of Hong
Kong. His research interest is multicast video streaming.

Jack Y. B. Lee is with the Department of Information En-
gineering at the Chinese University of Hong Kong. He directs the
Multimedia Communications Laboratory (http://www.mcl.ie.
cuhk.edu.hk) to conduct research in distributed multimedia sys-
tems, fault-tolerant systems, multicast communications, and
Internet computing. He can be reached at jacklee@computer.org.

