STORAGE REBUILD FOR AUTOMATIC FAILURE RECOVERY
IN VIDEO-ON-DEMAND SERVERS

Y.B. Lee and P.C. Wong

Department of Information Engineering
“The Chinese University of Hong Kong, Hong Kong
{yblee, pcwong} @ie.cuhk.edu.hk

ABSTRACT

In a previous study [4], we proposed a Redundant Array. of
Inexpensive Servers (RAIS) architecture for designing scalable
and fault-tolerant video-on-demand systems. Video data are
striped across an array of autonomous servers, resulting in a
scalable architecture where more concurrent video sessions can
be supported by simply adding more servers. Moreover, by
adding. data redundancy among the servers, client recovery
algorithms can be implemented to sustain server failure and
provide non-stop video services. In this paper, we consider the
failure recovery issue in RAIS. Specifically, we propose and
analyze three algorithms for rebuilding data at a failed server to a
spare server in order to restore the system back to normal
operation. We derive the performance model and use numerical
results to show that automatic rebuild can be done in reasonable
time using the proposed rebuild algorithms.

1. INTRODUCTION

In {4], we proposed a Redundant Array of Inexpensive Servers
(RAIS) architecture for designing scalable and fault-tolerant
video-on-demand systems (Figure 1). Video units of each stream
are striped across an array of servers and a fast packet switch is
used to connect server and client stations. Each client contacts
the server one by one to retrieve units of a particular video
stream for playback and hence client load is uniformly shared by
all servers irrespective of the skewness [3] of the video titles.
This architecture allows one to build large VoD systems from
smaller, less expensive server hardware (such as PCs). In
addition, when scaling up the system to more concurrent users,
the video storage need only be redistributed rather than
replicated.

Besides scalability, the RAIS architecture also enables one to
incorporate various levels of redundancy to implement server-
level fault tolerance. The key is to reserve stripe units within a
stripe to store redundant data as shown in Figure 2. Let there are
Njs servers in the system. To sustain K simultaneous server
failures, we would need to reserve K redundant units in every
stripe. The example shown in Figure 2 uses a redundancy level
of K=1. Therefore, when a server (say, server 2) fails, the client
can recover the lost stripe vnit of the failed server by retrieving
the corresponding stripe units from the remaining servers, and
performing erasure-correcting computation over the received

0-7803-4371-9/97/$10.00 © 1997 IEEE

258

units. Through proper client buffering as discussed in [4], video
playback continuity can be maintained during the failure.

Although a RAIS system remains operational in failure mode, we
still need to rebuild the data at the failed server into a spare
server to protect the system from further server failures. This
paper studies various algorithms for this rebuild process.

2. ANALYSIS OF REBUILD ALGORITHMS

Figure 2 shows the use of a spare server to store rebuilt data - hot
sparing. Note that the spare server is not used under normal-
mode operation. When a server fails, the lost data in the failed
server are rebuilt into the spare server. When the rebuild process
finishes, the spare server simply replaces the failed server.

We consider three rebuild algorithms in the following sections.
For simplicity, we assume K=1 and consider only single-server
failure in the following analysis, but the analysis can be extended
to cover multiple-simultaneous server failures. When one server
fails, the (Ny — 1) remaining active servers will cooperate to
rebuild the data into the spare server. Let U bytes be the storage
capacity of each server, and Ss be the effective server transfer
capacity. For simplicity, we assume that S is a constant value
equal to the sum of rates a server sends and receives data. That
is, if a server has an effective transfer capacity of S5 = 6MB/s,
and the server is receiving data at a rate of 2MB/s, the server will
only be able to send data up to 4MB/s.

If all data in the servers are stored in a backup storage, we can
reload the backup data into a spare server. The rebuild rate will
then be equal to the transfer capacity of the backup device or the
spare server, whichever is smaller. For comparison with other
rebuild algorithms, we assume the backup device has infinite
throughput and capacity. Therefore the rebuild rate is bounded
by the server throughput R, ., =S,, which is also the

maximum rate achievable by any algorithm. In practice,
maintaining a video library backup and keeping it up to date
would likely be expensive, therefore the rebuild algorithms
proposed in the following sectlons do not require extra backup
data.

2.1 Baseline Rebuild

In this algorithm, the remammg active servers send their stripe
units to the spare server and the spare server computes the lost
data. This method is similar to the baseline rebuild scheme in
RAID [1]. For every: lost stripe unit, a total of (Ns — 1) stripe

units will have to be transferred to the spare server. Since the
servers continue service during rebuild, the average available
transfer rate from each server will be Sg(1-p), where p is the
utilization of the remaining active servers. The total rate of data
transfer from the remaining (N5 — 1) active servers is therefore

r=S,(1-p}N; -1)

It is possible that » may exceed the transfer capacity of the spare
server if p is less than (1-/(Ns — 1)). We have the following
theorem relating the upper limit on the baseline rebuild rate.

Theorem 1 The data rebuild rate of baseline rebuild, denoted by
Riaseiine is bounded by the capacity Ss of the spare server and is
given by

_ |85 /(N5 =) for p<(1-1/(Ng-1) @
bacine “18,(1-p) for p2 (1-1/(Ng 1))
Proof: Please refer to [1]. a2
The rebuild time for a server with storage U is then given by
(N, -DU
baseline p 3)

min(S,, S;(1— p)(N; —1))

2.2 Distributed Rebuild

In baseline rebuild, the transfer capacity of the spare server
becomes the bottleneck even if the remaining active servers.have
unused capacity available. Another approach is to compute the
lost data before transferring to the spare server. In this way, only
the reconstructed data is sent to the spare server and hence the
capacity of the spare server can be better utilized. We consider a
distributed rebuild scheme where rebuild computation is
distributed over all the remaining active servers. We divide the
lost data into (Vs — 1) equal-sized subsets, with each subset
rebuilt by one of the remaining (Ns — 1) servers. The active
server responsible for a subset retrieves stripe units from the
other (N — 2) servers, computes the lost unit, and transfers the
unit to the spare server for storage.

Note that the sum of transfer rates in or out of the working
(Ns~1) servers is given by S (1—p}N, —1). For each stripe
unit rebuilt by a particular server, we have (Ns — 2) transmissions
from the remaining servers, (N5 — 2) receptions into this server,

plus one transmission from this server to the spare server.
Therefore the rebuild rate R jiipureq t0 the spare server is given by

R _S;A=p)Ns -1 _ S;(1-p)(N; =)
dismbued YNy =2)+1 2N -3

@

Note that Ripueq i always smaller than the capacity of the
spare server, proved in the following theorem:

Theorem 2 Under distributed rebuild, the rate of data transfer
from the active servers to the spare server will never exceed the
capacity of the spare server. '

Proof: .
We note that (Ng — 1) < 2(Ng — 3) for all Ny = 2, hence

259

Rdistributed < SS (I—P) < SS-]
The rebuild time is given by
U U(2N; -3) ®)

Tuns = =
dharinaed Rigvuea Ss(—pP)Ns~1)

2.3 Mixed Distributed-Baseline Rebuild

In distributed rebuild, the spare server is never fully utilized.
This is due to the fact that for every stripe unit of data
reconstructed, a total of (2N5 — 3) stripe units need to be
transferred among the remaining active servers. In baseline
rebuild, the ratio is only (Ng — 1), albeit at the cost of (Ng — 1)
times more capacity required at the spare server. This suggests a
mixed algorithm which part of the data are rebuilt using
distributed rebuild, and the rest by baseline rebuild.

To analyze the mixed distributed-baseline rebuild, we let p
(0<u<1) be the proportion of server capacity allocated for
distributed rebuild, and (1-p) for baseline rebuild. The total
rebuild rate into the spare server is just the sum of the two
processes

= Ss(=pYNs ~Dp

D4 5, (1= p)a-p)

2N; -3 ©

Rmixed
To find the effect of u, we differentiate Equation (6) with respect
top

R,
du

Ny -1

2N, -3 o

=Ss(1—p)(—1]so VN 23

Therefore reducing | always increases the total rebuild rate for
three or more servers. That is, baseline rebuild is more effective
unless it is bounded by the spare server capacity. When Ng=2,
the rebuild rate is independent of p and just equal to Ss(1-p). To
find the lower bound for p, we use the condition that the
aggregate rate of rebuild traffic going into the spare server
cannot exceed Sg:

Ss(1= PYNs ~Du

+S,1-p)(Ng —D(A-p)< S 8
2N, -3 sA= PN, =D~) S S, ®
Solving for p gives the lower bound

1
(- XN —1)[2Ns = —1]

Note that we have u =0 for p 2 (1 — 1/(Ng = 1)).

Using this lower bound, the maximum rebuild rate is then given

by ‘

s fi+ - o)V, -]
2N -1)

S;(1-p)

< for p < (1-1/(N, 1))

mixed =
otherwise

(10)

The rebuild time can then be found accordingly.

2.4 Optimal Rebuild Rate

Having derived the rebuild rate for the proposed algorithms, it is
interesting to see how far these algorithms are from the optimum.
It turns out that under the current assumptions, the mixed
distributed-baseline rebuild algorithm is optimal. To prove this,
we note that the computation of lost units is done either at the
spare server, the remaining (N5 — 1) servers, or partially done at
both. Therefore we have the next lemma.

Lemma 1 For any stripe. unit rebuilt and stored into the spare
server, we need (N5 — 1) transmissions from the remaining active
servers.

Proof: Please refer to [1]. =2
Each server contributes in the rebuild process either in the
transmission or reception mode, or both. Let ¢ {0 < ¢ < 1} be
the proportion of capacity each server used for transmission. The
sum of capacities of the remaining servers used for transmission
is given by @S (1—- p)(N, —1). On the other hand, the sum of
capacities available for reception is equal to the sum of receiving
capacities of the remaining servers plus the capacity at the spare
server. We have therefore

@S, (1= PYN =) S (1~ @)Ss (1= p)N ~D)+S,

Lemma 1 shows that the rebuild rate is proportional to the sum
of transmission rates by the remaining servers. Hence to
maximize the rebuild rate implies maximizing the transmission
rate, subjected to the constraint in Equation (11). We can solve
for ¢ by rearranging Equation (11) as

1+d-p)N, -1
T 2(-p)N -

Note that ¢ = 1 for p 2 (1 — 1/(N- 1)), we can obtain the optimal
rebuild rate as

S:fi+a-pywv, -nl
2N -1)
S,(1~p)

an

(12

for p < A-1/N, 1))

max
otherwise

(13)

which is exactly equal to Equation (10). We state our result in
the following theorem.

Theorem 3 The mixed distributed-baseline rebuild scheme
achieves the optimal rebuild rate and hence requires the
minimum amount of rebuild time.

Proof:

This follows directly from Equation (10) and Equation (11). ®

2.5 Rebuild Time

The previous sections focus on deriving the rebuild rate and
time. It is clear that the rebuild time increases with server
loading (or utilization) p. To control the rebuild time, the server
should limit its server loading p and make available some

260

capacity for the storage rebuild process. First of all, we note that
the rebuild time will be minimum if p is zero, given by

_ 2N -1

14
N, (14)

To complete the rebuild process using the mixed distributed-
baseline scheme by time ¢ (¢t>T,,,), we can derive the server
loading p from Equation 9

1+ L forTmSts————U(Ns_l)
gl Mool 8 =T,
L ey
s, S,

as)

Therefore by limiting ‘the server loading to p, we can control the
rebuild process to finish by time .

3. NUMERICAL RESULTS AND DISCUSSIONS

We consider a RAIS VoD system with 5 active servers and one
spare server. Each server has 4GB storage, including the
redundant units. We assume a server transfer capacity of 2MB/s
(16Mb/s) in accordance with our experimental results in [4].
Results for other server capacity and storage size can be obtained
by scaling the numbers accordingly.

Figure 3 shows the rebuild rate versus server utilization for all
rebuild schemes. We observe that for baseline rebuild, the
rebuild rate is constant at Sg/(Ns — 1) for pS(1-1/(Ng - 1)), even
if the remaining active servers are lightly loaded and so have
more capacity - available for rebuild.” As the active server
utilization approaches one, the rebuild rate drops quickly.
Distributed: rebuild performs better than baseline rebuild when
the server utilization is low, but it deteriorates earlier when
server loading increases. Mixed distributed-baseline rebuild
gives the best performance under all loading conditions. In fact it
achieves the optimal rebuild rate. For comparison, we also show
the maximum achievable rebuild rate when the lost data is
loaded from a backup device directly. It sets an upper bound on
the rebuild rate that can be achieved in an ideal situation.

Figure 4 shows the time required for rebuild. We note that the
time difference between mixed and distributed schemes is less
significant at light loading, and there is no difference at high
loading between the mixed and the baseline scheme. So instead
of using a mixed baseline-distributed scheme, one can switch
from distributed rebuild for low server utilization to baseline
rebuild for high server utilization.

Figure 5 shows the rebuild time versus the number of servers in
the RAIS system under a server loading of p=0.5. We observe
that the rebuijld time for baseline rebuild increases with more
servers. This is because the amount of data units required to
rebuild a lost unit increases with more servers. On the other
hand, the rebuild time for distributed rebuild and mixed
distributed-baseline rebuild remains roughly the same for 10 or
more servers. This is because the rebuild capacity also increases
with the number of servers. Hence distributed rebuild and mixed

distributed-baseline rebuild is more scalable to large RAIS

25
systems with many servers. ' ' ! '
4. CONCLUSION) Reload from backup |
In this paper, we analyzed and compared three algorithms for . ’
rebuilding lost data in a RAIS VoD system. We derived the é‘ | _
optimal rebuild rate and showed that the mixed distributed- e 15
baseline algorithm is optimal. We presented numerical results nz . o
obtained using real-world parameters, and showed that fully - Optimal & Distribuied Baseline -
automatic rebuild can be performed in reasonable time if the & .
server loading is controlled propetly. |} ---- cememeeaoe SR o~
osf -
REFERENCES
[11 J. Chandy, A. L. Narasimha Reddy, “Failure Evaluation of | |) ;
Disk Array Organizations,” In Proceedings of the 13th %% 02 04 06 08 1
International Conference on Distributed Computing Server Loading
Systems, pp. 319-26, IEEE Computer Society Press, 1993. . .)
[2] Y.B. Lee, VIOLA - Video on Local Area Networks, PhD Figure 3. Rebuild rate versus server loading.
Dissertation, Department of Information Engineering,
CUHK, 1997. 100 T T T T
[3] T.D.C. Little, and D. Venkatesh, ‘“Popularity-Based
Assignment of Movies to Storage Devices in a Video-on-
Demand System,” ACM Multimedia Systems, 1994. /'
[4] P.C.Wong and Y.B.Lee, “Redundant Array of Inexpensive T .
Servers (RAIS) for On-demand Multimedia Services,” &
ICC’97, Montreal, Canada, June 8-12, 1997. g
F | Basline _______
&
! Optimal & Distributed-Baseline |
Reload from backup
o1]]]]
o 02 04 06 0.8 1
Server Loading
Figure 4. Rebuild time versus server loading.
100 T T T T
Video Clients
Figure 1. Architecture of a RAIS video-on-demand system. Baseline . ~==-"""
- 10 i i -
E -~ Distributed
= I3]
Strlpeumt—-»l u, § e R TP R P PR PR
o] Opumal & Distributed-Baseline
I"'——l « L W -
server | | Reload from backap
Parity umt—-»l__]
.............. . 1 |] 1
Parity Calculation Example: p,=u;s® u;;® u;® uyy Spare Server ! 0 10 2 30 40 50
Number of Servers (Ns)

Figure 2. Storage configuration of a RAIS system. . L ,
Figure 5. Rebuild time versus number of servers.

261

